The criterion of complete controllability of linear time-varying system in the critical case
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 81-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the conditions when the linear nonstationary system is totally controllable at the segment or does not possess this property.
@article{IIMI_2002_25_2_a22,
     author = {L. I. Rodina and E. L. Tonkov},
     title = {The criterion of complete controllability of linear time-varying system in the critical case},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {81--86},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a22/}
}
TY  - JOUR
AU  - L. I. Rodina
AU  - E. L. Tonkov
TI  - The criterion of complete controllability of linear time-varying system in the critical case
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2002
SP  - 81
EP  - 86
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a22/
LA  - ru
ID  - IIMI_2002_25_2_a22
ER  - 
%0 Journal Article
%A L. I. Rodina
%A E. L. Tonkov
%T The criterion of complete controllability of linear time-varying system in the critical case
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2002
%P 81-86
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a22/
%G ru
%F IIMI_2002_25_2_a22
L. I. Rodina; E. L. Tonkov. The criterion of complete controllability of linear time-varying system in the critical case. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 81-86. http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a22/

[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[2] Chang A., “An algebraic characterization of controllability”, IEEE Trans. Aut. Control, 10:1 (1965), 112–114 | DOI

[3] Levakov A. A., “K upravlyaemosti lineinykh nestatsionarnykh sistem”, Differents. uravneniya, 23:5 (1987), 798–806 | MR | Zbl

[4] Minyuk S. A., “K teorii polnoi upravlyaemosti lineinykh nestatsionarnykh sistem”, Differents. uravneniya, 26:3 (1990), 414–420 | MR | Zbl

[5] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, In-t matem. NAN Belarusi, Minsk, 1999, 408 pp. | MR