Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2002_25_2_a22, author = {L. I. Rodina and E. L. Tonkov}, title = {The criterion of complete controllability of linear time-varying system in the critical case}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {81--86}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a22/} }
TY - JOUR AU - L. I. Rodina AU - E. L. Tonkov TI - The criterion of complete controllability of linear time-varying system in the critical case JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2002 SP - 81 EP - 86 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a22/ LA - ru ID - IIMI_2002_25_2_a22 ER -
%0 Journal Article %A L. I. Rodina %A E. L. Tonkov %T The criterion of complete controllability of linear time-varying system in the critical case %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2002 %P 81-86 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a22/ %G ru %F IIMI_2002_25_2_a22
L. I. Rodina; E. L. Tonkov. The criterion of complete controllability of linear time-varying system in the critical case. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 81-86. http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a22/
[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR
[2] Chang A., “An algebraic characterization of controllability”, IEEE Trans. Aut. Control, 10:1 (1965), 112–114 | DOI
[3] Levakov A. A., “K upravlyaemosti lineinykh nestatsionarnykh sistem”, Differents. uravneniya, 23:5 (1987), 798–806 | MR | Zbl
[4] Minyuk S. A., “K teorii polnoi upravlyaemosti lineinykh nestatsionarnykh sistem”, Differents. uravneniya, 26:3 (1990), 414–420 | MR | Zbl
[5] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, In-t matem. NAN Belarusi, Minsk, 1999, 408 pp. | MR