Numerical methods for solving initial and boundary value problems for functional differential equations
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 75-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

General approach to constructing numerical methods for functional-differential equations is considered. The general approach consists of distinguishing the finite dimensional and infinite dimensional phase components. As an example, Runge–Kutta-like methods are described.
@article{IIMI_2002_25_2_a20,
     author = {V. G. Pimenov},
     title = {Numerical methods for solving initial and boundary value problems for functional differential equations},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {75--78},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a20/}
}
TY  - JOUR
AU  - V. G. Pimenov
TI  - Numerical methods for solving initial and boundary value problems for functional differential equations
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2002
SP  - 75
EP  - 78
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a20/
LA  - ru
ID  - IIMI_2002_25_2_a20
ER  - 
%0 Journal Article
%A V. G. Pimenov
%T Numerical methods for solving initial and boundary value problems for functional differential equations
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2002
%P 75-78
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a20/
%G ru
%F IIMI_2002_25_2_a20
V. G. Pimenov. Numerical methods for solving initial and boundary value problems for functional differential equations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 75-78. http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a20/

[1] Kholl D., Uatt D., Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979, 312 pp.

[2] Bellen A., “Constrained mesh methods for functional differential equations”, International Series of Numerical Mathematics, Verlag, Basel, 1985, 52–70 | MR

[3] Baker C. T. H., Paul C. A. H., Wille D. R., “Issues in the numerical solution of evolutionary delay differential equations”, Advances in Comput. Math., 3 (1995), 171–196 | MR | Zbl

[4] Kwon W. H., Kim A. V., Pimenov V. G., Lozhnikov A. B., Han S. H., Onegova O. V., Time-Delay System Toolbox (for use with MATLAB). Beta Version, Seoul National University, Seoul, 1998, 114 pp. | Zbl

[5] Kim A. V., Pimenov V. G., “O primenenii i-gladkogo analiza k razrabotke chislennykh metodov resheniya funktsionalno-differentsialnykh uravnenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5 (1998), 104–126

[6] Pimenov V. G., Funktsionalno-differentsialnye uravneniya: chislennye metody, Izd-vo Ural. un-ta, Ekaterinburg, 1998, 80 pp.

[7] Pimenov V. G., “Obschie lineinye metody chislennogo resheniya differentsialno-funktsionalnykh uravnenii”, Differents. uravneniya, 37:1 (2001), 105–114 | MR | Zbl

[8] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR | Zbl