Solving nonlinear equations by Newton's pole method
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 69-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of solving systems of nonlinear equations is considered. The new modification of a classical Newton method, which called polar Newton method, is described. For some rule of choice of poluses on each iteration conditions of quadratic convergence of this method are found.
@article{IIMI_2002_25_2_a18,
     author = {M. Yu. Petrov},
     title = {Solving nonlinear equations by {Newton's} pole method},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {69--72},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a18/}
}
TY  - JOUR
AU  - M. Yu. Petrov
TI  - Solving nonlinear equations by Newton's pole method
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2002
SP  - 69
EP  - 72
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a18/
LA  - ru
ID  - IIMI_2002_25_2_a18
ER  - 
%0 Journal Article
%A M. Yu. Petrov
%T Solving nonlinear equations by Newton's pole method
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2002
%P 69-72
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a18/
%G ru
%F IIMI_2002_25_2_a18
M. Yu. Petrov. Solving nonlinear equations by Newton's pole method. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 69-72. http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a18/

[1] Verzhbitskii V. M., Osnovy chislennykh metodov, Vyssh. shkola, M., 2002, 848 pp.

[2] Verzhbitskii V. M., Petrov M. Yu., “Polyusnyi metod Nyutona”, Probl. sovrem. teorii period. dvizhenii, Mezhvuz. sb., Izhevsk, 2002 (to appear)