Stability of periodic functional differential equations
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 43-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic behavior of the finite-dimensional approximations for the monodromy operator is investigated.
@article{IIMI_2002_25_2_a10,
     author = {Yu. F. Dolgii},
     title = {Stability of periodic functional differential equations},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {43--46},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a10/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
TI  - Stability of periodic functional differential equations
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2002
SP  - 43
EP  - 46
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a10/
LA  - ru
ID  - IIMI_2002_25_2_a10
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%T Stability of periodic functional differential equations
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2002
%P 43-46
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a10/
%G ru
%F IIMI_2002_25_2_a10
Yu. F. Dolgii. Stability of periodic functional differential equations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 43-46. http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a10/

[1] Dolgii Yu. F., “Kharakteristicheskoe uravnenie v zadache ustoichivosti periodicheskikh sistem s posledeistviem”, Izv. Ural. gos. un-ta. Matematika i mekhanika, vyp. 1, 1998, no. 10, 34–43 | MR | Zbl

[2] Dolgii Yu. F., “Konechnomernye approksimatsii operatora monodromii dlya periodicheskikh sistem differentsialnykh uravnenii s zapazdyvaniyami”, Vestn. Perm. gos. tekh. un-ta. Funktsionalno-differentsialnye uravneniya (to appear)

[3] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR | Zbl

[4] Berdyshev V. I., Subbotin Yu. N., Chislennye metody priblizheniya funktsii, Sred.-Ural. kn. izd-vo, Sverdlovsk, 1979, 120 pp.