A note on extended Saigo operators and their q-analogues
The Bulletin of Irkutsk State University. Series Mathematics, Tome 51 (2025), pp. 66-81

Voir la notice de l'article provenant de la source Math-Net.Ru

Megumi Saigo derived generalized fractional operators, involving Gauss hypergeometric function, having four special cases: Riemann-Liouville, Weyl, Erdély-Kober left and right sided fractional operators. Mridula Garg and Lata Chanchalani established q-analogues of Saigo fractional integral operators. Building upon this base, the current article aims to generalize Saigo integral operators as well their q-analogues. In addition, we obtain some new results involving extended Saigo integral operators and their q-extensions.
Keywords: integral operators, generalized hypergeometric series, q-gamma functions, q-beta functions and integrals, q-calculus and related topics.
@article{IIGUM_2025_51_a4,
     author = {K. K. Chaudhary and S. B. Rao},
     title = {A note on extended {Saigo} operators and their q-analogues},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {66--81},
     publisher = {mathdoc},
     volume = {51},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2025_51_a4/}
}
TY  - JOUR
AU  - K. K. Chaudhary
AU  - S. B. Rao
TI  - A note on extended Saigo operators and their q-analogues
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2025
SP  - 66
EP  - 81
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2025_51_a4/
LA  - en
ID  - IIGUM_2025_51_a4
ER  - 
%0 Journal Article
%A K. K. Chaudhary
%A S. B. Rao
%T A note on extended Saigo operators and their q-analogues
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2025
%P 66-81
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2025_51_a4/
%G en
%F IIGUM_2025_51_a4
K. K. Chaudhary; S. B. Rao. A note on extended Saigo operators and their q-analogues. The Bulletin of Irkutsk State University. Series Mathematics, Tome 51 (2025), pp. 66-81. http://geodesic.mathdoc.fr/item/IIGUM_2025_51_a4/