Hyperbolic volumes of two bridge cone-manifolds
The Bulletin of Irkutsk State University. Series Mathematics, Tome 51 (2025), pp. 21-33

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the existence of hyperbolic, Euclidean and spherical structures on cone-manifolds with underlying space 3-sphere and with singular set a given two-bridge knot. For two-bridge knots with 8 crossings we present trigonometric identities involving the length of singular geodesics and cone angles of such cone-manifolds. Then these identities are used to produce exact integral formulae for the volume of the corresponding cone-manifold modeled in the hyperbolic space.
Keywords: cone-manifold, orbifold, two-bridge knot, geodesic length.
Mots-clés : volume
@article{IIGUM_2025_51_a1,
     author = {A. D. Mednykh and A. B. Qutbaev},
     title = {Hyperbolic volumes of two bridge cone-manifolds},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {51},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2025_51_a1/}
}
TY  - JOUR
AU  - A. D. Mednykh
AU  - A. B. Qutbaev
TI  - Hyperbolic volumes of two bridge cone-manifolds
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2025
SP  - 21
EP  - 33
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2025_51_a1/
LA  - en
ID  - IIGUM_2025_51_a1
ER  - 
%0 Journal Article
%A A. D. Mednykh
%A A. B. Qutbaev
%T Hyperbolic volumes of two bridge cone-manifolds
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2025
%P 21-33
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2025_51_a1/
%G en
%F IIGUM_2025_51_a1
A. D. Mednykh; A. B. Qutbaev. Hyperbolic volumes of two bridge cone-manifolds. The Bulletin of Irkutsk State University. Series Mathematics, Tome 51 (2025), pp. 21-33. http://geodesic.mathdoc.fr/item/IIGUM_2025_51_a1/