Hyperbolic volumes of two bridge cone-manifolds
    
    
  
  
  
      
      
      
        
The Bulletin of Irkutsk State University. Series Mathematics, Tome 51 (2025), pp. 21-33
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we investigate the existence of hyperbolic, Euclidean and spherical structures on cone-manifolds with underlying space 3-sphere and with singular set a given two-bridge knot. For two-bridge knots with 8 crossings we present trigonometric identities involving the length of singular geodesics and cone angles of such cone-manifolds. Then these identities are used to produce exact integral formulae for the volume of the corresponding cone-manifold modeled in the hyperbolic space.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
cone-manifold, orbifold, two-bridge knot, geodesic length.
Mots-clés : volume
                    
                  
                
                
                Mots-clés : volume
@article{IIGUM_2025_51_a1,
     author = {A. D. Mednykh and A. B. Qutbaev},
     title = {Hyperbolic volumes of two bridge cone-manifolds},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {51},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2025_51_a1/}
}
                      
                      
                    TY - JOUR AU - A. D. Mednykh AU - A. B. Qutbaev TI - Hyperbolic volumes of two bridge cone-manifolds JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2025 SP - 21 EP - 33 VL - 51 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2025_51_a1/ LA - en ID - IIGUM_2025_51_a1 ER -
A. D. Mednykh; A. B. Qutbaev. Hyperbolic volumes of two bridge cone-manifolds. The Bulletin of Irkutsk State University. Series Mathematics, Tome 51 (2025), pp. 21-33. http://geodesic.mathdoc.fr/item/IIGUM_2025_51_a1/
