@article{IIGUM_2024_48_a2,
author = {Alexander L. Kazakov and Anna A. Lempert and Duc Minh Nguyen},
title = {On covering of cylindrical and conical surfaces with equal balls},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {34--48},
year = {2024},
volume = {48},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a2/}
}
TY - JOUR AU - Alexander L. Kazakov AU - Anna A. Lempert AU - Duc Minh Nguyen TI - On covering of cylindrical and conical surfaces with equal balls JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2024 SP - 34 EP - 48 VL - 48 UR - http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a2/ LA - en ID - IIGUM_2024_48_a2 ER -
%0 Journal Article %A Alexander L. Kazakov %A Anna A. Lempert %A Duc Minh Nguyen %T On covering of cylindrical and conical surfaces with equal balls %J The Bulletin of Irkutsk State University. Series Mathematics %D 2024 %P 34-48 %V 48 %U http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a2/ %G en %F IIGUM_2024_48_a2
Alexander L. Kazakov; Anna A. Lempert; Duc Minh Nguyen. On covering of cylindrical and conical surfaces with equal balls. The Bulletin of Irkutsk State University. Series Mathematics, Tome 48 (2024), pp. 34-48. http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a2/
[1] Bezdek A., Fodor F., Vigh V., Zarnocz T., “On the multiplicity of arrangements of congruent zones on the sphere”, Metric Geometry, 2017 | Zbl
[2] Bezdek K., Langi Z., “From the separable Tammes problem to extremal distributions of great circles in the unit sphere”, Discrete Comput. Geom., 2023 | DOI | MR
[3] Bleicher M. N., Toth L. F., “Circle-packings and circle-coverings on a cylinder”, Michigan Mathematical Journal, 11:4 (1964), 337–341 | DOI | MR | Zbl
[4] Dorninger D., “Thinnest covering of the Euclidean plane with incongruent circles”, Analysis and Geometry in Metric Spaces, 5 (2017), 40–46 | DOI | MR | Zbl
[5] Dumer I., “Covering spheres with spheres”, Discrete Computational Geometry, 38 (2007), 665–679 | DOI | MR | Zbl
[6] Feynman R., Leighton R., Sands M., Feynman Lectures on Physics, v. 3, Radiation. Waves. Quanta, Librocom, M., 2013 | MR
[7] Fodor F., Vigh V., Zarnocz T., “Covering the sphere by equal zones”, Acta Math. Hungar, 149:2 (2016), 478–489 | DOI | MR | Zbl
[8] Fortune S., “A sweepline algorithm for Voronoi diagrams”, Algorithmica, 2 (1987), 153–174 | DOI | MR | Zbl
[9] Galiev Sh. I., “Multiple packings and coverings of the sphere”, Discrete Mathematics, 8:3 (1996), 148–160 | DOI | Zbl
[10] Gritskevich O.V., Meshcheryakov N.A., Podyanolsky Yu.V., “Formation of an optical image of an arbitrary geometric shape on curved surfaces of revolution”, Autometry, 1997, no. 2, 26–33 (in Russian)
[11] Karoly B., Gergely W., “Covering the Sphere by Equal Spherical Balls”, Discrete and Computational Geometry, 25 (2003), 235–251 | DOI | MR | Zbl
[12] Kazakov A.L., Lempert A.A., “An Approach to Optimization in Transport Logistics”, Automation and Remote Control, 72:7 (2011), 1398–1404 | DOI | MR | Zbl
[13] Kazakov A.L., Lempert A.A., Bukharov D.S., “On segmenting logistical zones for servicing continuously developed consumers”, Automation and Remote Control, 74:6 (2013), 968–977 | DOI | MR | Zbl
[14] Kazakov A.L., Lebedev P.D., “Algorithms of construction of the best n-networks in metric spaces”, Automation and Remote Control, 78:7 (2017), 1290–1301 | DOI | MR | Zbl
[15] Lamarche F., Leroy C., “Evaluation of the volume of intersection of a sphere with a cylinder by elliptic integrals”, Comput. Phys. Commun., 59:2 (1990), 359–369 | DOI | MR
[16] Lebedev P.D., Stoychin K.L., “Algorithms for Constructing Optimal Covering of Planar Figures with Disks Sets of Linearly Different Radii”, The Bulletin of Irkutsk State University. Series Mathematics, 46 (2023), 35–50 | DOI | Zbl
[17] Lempert A. A., Kazakov A. L., Le Q. M., “On reserve and double covering problems for the sets with non-Euclidean metrics”, Yugoslav Journal of Operations Research, 29:1 (2019), 69–79 | DOI | MR | Zbl
[18] Nurmela K. J., Patric R. J. O., Covering a square with up to 30 equal circles, Lab. Technol. Helsinki Univ, 2000, 20 pp.
[19] Ruff I., “The Intersection of a Cone and a Sphere: A Contribution to the Geometry of Satellite Viewing”, Journal of Applied Meteorology and Climatology, 10:3 (1971), 607–609 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[20] Saulskiy V. K., “Multisatellite systems with linear structure and their application for continuous coverage of the earth”, Cosmic Research, 43:1 (2005), 34–51 | DOI
[21] Takhonov I.I., “On some problems of covering the plane with circles”, Diskretnyi Analiz i Issledovanie Operatsii, 21:1 (2014), 84–102 (in Russian) | MR | Zbl
[22] Tarnai T., Zsolt G., “Covering a Square by Equal Circles”, Elemente der Mathematik, 50:4 (1995), 167–170 | MR | Zbl
[23] Toth. G. F., Toth. L. F., Kuperberg W., “Miscellaneous Problems About Packing and Covering”, Lagerungen, Grundlehren der mathematischen Wissenschaften, 360, 2023, 313–336 | DOI | MR
[24] Toth L.F., Arrangements in the Plane, on the Sphere, and in Space, Fizmatlit Publ, M., 1958, 364 pp. (in Russian)
[25] D. T. Vu, T. B. Phung, A. A. Lempert, D. M. Nguyen, “On the problem of the densest packing of spherical segments into a sphere”, Management and Administrative Professional Review, 14:11 (2023), 19307–19323 | DOI