Mots-clés : ESPP (pseudo-polynomial form, PSPF)
@article{IIGUM_2020_33_a6,
author = {S. N. Selezneva and A. A. Lobanov},
title = {On length of {Boolean} functions of a small number of variables in the class of pseudo-polynomials},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {96--105},
year = {2020},
volume = {33},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_33_a6/}
}
TY - JOUR AU - S. N. Selezneva AU - A. A. Lobanov TI - On length of Boolean functions of a small number of variables in the class of pseudo-polynomials JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2020 SP - 96 EP - 105 VL - 33 UR - http://geodesic.mathdoc.fr/item/IIGUM_2020_33_a6/ LA - en ID - IIGUM_2020_33_a6 ER -
%0 Journal Article %A S. N. Selezneva %A A. A. Lobanov %T On length of Boolean functions of a small number of variables in the class of pseudo-polynomials %J The Bulletin of Irkutsk State University. Series Mathematics %D 2020 %P 96-105 %V 33 %U http://geodesic.mathdoc.fr/item/IIGUM_2020_33_a6/ %G en %F IIGUM_2020_33_a6
S. N. Selezneva; A. A. Lobanov. On length of Boolean functions of a small number of variables in the class of pseudo-polynomials. The Bulletin of Irkutsk State University. Series Mathematics, Tome 33 (2020), pp. 96-105. http://geodesic.mathdoc.fr/item/IIGUM_2020_33_a6/
[1] Baliuk A. S., “Complexity lower bound for Boolean functions in the class of extended operator forms”, The Bulletin of Irkutsk State University. Series Mathematics, 30 (2019), 125–140 | DOI | Zbl
[2] Ishikawa R., Hirayama T., Koda G., Shimizu K., “New three-level Boolean expression based on EXOR gates”, IEICE Trans. Inf. Syst., E87-D:5 (2004), 214–1222
[3] Kirichenko K. D., “An upper bound for complexity of polynomial normal forms of Boolean functions”, Discrete Math. Appl., 15:4 (2005), 351–360 | DOI | MR | Zbl
[4] Lozhkin S. A., Shupletsov M. S., Konovodov V. A., Danilov B. R., Zhukov V. V., Bagrov N. Yu., “Raspredelennaya sistema i algoritmy poiska minimal'nyh i blizkih k nim kontaktnyh shem dlya bolevyh funkthiy malogo chisla peremennyh”, Sbornik trudov vserossiyskih nauchno-tehnicheskih konferentsiy “Problemy razrabotki perspektivnyh mikro- i nanoelektronnyh sistem (MES)”, v. 1, 2016, 40–47 (in Russian)
[5] Peryazev N. A., “Complexity of Boolean functions in the class of polarized polynomial forms”, Algebra and Logic, 34 (1995), 177–179 | DOI | MR | Zbl
[6] Sasao T., Besslich P., “On the complexity of mod-2 sum PLA's”, IEEE Trans. on Comput., 39:2 (1990), 262–266 | DOI
[7] Selezneva S. N., “On the length of Boolean functions in the class of exclusive-OR sums of pseudoproducts”, Moscow University Computational Mathematics and Cybernetics, 38:2 (2014), 64–68 | DOI | MR | Zbl
[8] Selezneva S. N., “Order on the length of Boolean functions in the class of exclusive-OR sums of pseudoproducts”, Moscow University Computational Mathematics and Cybernetics, 40:3 (2016), 123–127 | DOI | MR | Zbl
[9] Suprun V. P., “Complexity of Boolean functions in a class of canonical polarized polynomials”, Discrete Math. Appl., 4:3 (1994), 273–277 | DOI | MR | Zbl
[10] Ugryumov E. P., Digital Circuitry, BHV-Petersburg Publ., Saint-Petersburg, 2004, 528 pp.
[11] Vinokurov S. F., Kazimirov A. S., “On the complexity of one class of Boolean functions”, The Bulletin of Irkutsk State University. Series Mathematics, 4 (2010), 2–6 (in Russian) | Zbl
[12] Yablonski S. V., Introduction in Discrete Mathematics, Higher School Publ., M., 2001, 384 pp.