Optimal control of differential inclusions, I:~Lipschitzian case
The Bulletin of Irkutsk State University. Series Mathematics, Tome 30 (2019), pp. 45-58
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop the method of discrete approximations to study optimal control problems for differential inclusions by using advanced tools of variational analysis and generalized differentiation. The first part describes the method, appropriate machinery of variational analysis and then presents the main result on necessary optimality conditions in maximum principle form for Lipschitzian differential inclusions.
Keywords:
optimal control, Lipschitzian differential inclusions, variational analysis, discrete approximations, generalized differentiation.
@article{IIGUM_2019_30_a3,
author = {B. S. Mordukhovich},
title = {Optimal control of differential inclusions, {I:~Lipschitzian} case},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {45--58},
publisher = {mathdoc},
volume = {30},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2019_30_a3/}
}
TY - JOUR AU - B. S. Mordukhovich TI - Optimal control of differential inclusions, I:~Lipschitzian case JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2019 SP - 45 EP - 58 VL - 30 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2019_30_a3/ LA - en ID - IIGUM_2019_30_a3 ER -
B. S. Mordukhovich. Optimal control of differential inclusions, I:~Lipschitzian case. The Bulletin of Irkutsk State University. Series Mathematics, Tome 30 (2019), pp. 45-58. http://geodesic.mathdoc.fr/item/IIGUM_2019_30_a3/