Mots-clés : sum of radii.
@article{IIGUM_2019_28_a9,
author = {R. Enkhbat and J. Davaadulam},
title = {Maximizing the sum of radii of balls inscribed in a polyhedral set},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {138--145},
year = {2019},
volume = {28},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2019_28_a9/}
}
TY - JOUR AU - R. Enkhbat AU - J. Davaadulam TI - Maximizing the sum of radii of balls inscribed in a polyhedral set JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2019 SP - 138 EP - 145 VL - 28 UR - http://geodesic.mathdoc.fr/item/IIGUM_2019_28_a9/ LA - en ID - IIGUM_2019_28_a9 ER -
R. Enkhbat; J. Davaadulam. Maximizing the sum of radii of balls inscribed in a polyhedral set. The Bulletin of Irkutsk State University. Series Mathematics, Tome 28 (2019), pp. 138-145. http://geodesic.mathdoc.fr/item/IIGUM_2019_28_a9/
[1] Birgin E. G., Gentil J. M., “New and improved results for packing identical unitary radius circles within triangles, rectangles and strips”, Computer and Operations Research, 37 (2010), 1318–1327 | DOI | MR | Zbl
[2] Birgin E. G., Martinez J. M., Ronconi D. P., “Optimizing the packing of cylinders into a rectangular container: a nonlinear approach”, European Journal of Operational Research, 160 (2005), 19–33 | DOI | MR | Zbl
[3] Castillo I., Kampas F. J., Pinter J. D., “Solving circle packing problems by global optimization: numerical results and industrial applications”, European Journal of Operational Research, 191 (2008), 786–802 | DOI | MR | Zbl
[4] Cui Y., Xu D., “Strips minimization in two-dimensional cutting stock of circular items”, Computers and Operations Research, 37 (2010), 621–629 | DOI | Zbl
[5] Enkhbat R., “Global optimization approach to Malfatti's problem”, Journal of Global Optimization, 65 (2016), 33–39 | DOI | MR | Zbl
[6] Enkhbat R., Barkova M., “Global search method for solving Malfatti's four-circle problem”, The Bulletin of Irkutsk State University. Series "Mathematics", 15 (2016), 38–49 | Zbl
[7] Enkhbat R., Barkova M., Strekalovsky A. S., “Solving Malfatti's High Dimensional Problem by Global Optimization”, Numerical Algebra, Control and Optimization, 6:2 (2016), 153–160 | DOI | MR | Zbl
[8] Fejos Toth L., Lagerungen in der Ebene auf der Kugel und im Raum, Grundl Math. Wiss., Zweite Auflage, Springer-Verlag, 1958 | MR
[9] Folkman J. H., Graham R. L., “A packing inequality for compact subsets of the plane”, Canadian Mathematical Bulletin, 12 (1969), 745–752 | DOI | MR | Zbl
[10] Goldberg M., “On the original Malfatti problem”, Mathematics Magazine, 40:5 (1967), 241–247 | DOI | MR | Zbl
[11] Grosso A. R., Jamali M. J. U., Locatelli M., Schoen F., “Solving the problem of packing equal and unequal circles in a circular container”, Journal of Global Optimization, 47:1 (2010), 63–81 | DOI | MR | Zbl
[12] Hamacher H. W., Drezner Z., Facility Location: Application and Theory, 2nd ed., Springer-Verlag, New York, 2004 | MR
[13] Hifi M., M'Hallah R., “A Literature Review on Circle and Sphere Packing Problems: Models and Methodologies”, Advances in Operations Research, 22 (2009) | DOI | Zbl
[14] Huang W., Ye T., “Global optimization method for finding dense packings of equal circles in a circle”, European Journal of Operational Research, 210 (2011), 516–524 | DOI | MR
[15] Lob H., Richmond H. W., “On the solutions of the Malfatti problem for a triangle”, Proc. London Math. Soc., 2:30 (1930), 287–301 | DOI | MR
[16] Malfatti C., “Memoria sopra una problema stereotomico”, Memoria di Matematica e di Fisica della Societa italiana della Scienze, 10:1 (1803), 235–244
[17] Strekalovsky A. S., “On the global extrema problem”, Soviet Math. Doklad, 292:5 (1987), 1062–1066 | MR
[18] Zalgaller V. A., “An inequality for acute triangles”, Ukrainskii Geometricheskii Sbornik, 35 (1991), 11–14 | MR