Classic solutions of boundary value problems for partial differential equations with operator of finite index in the main part of equation
The Bulletin of Irkutsk State University. Series Mathematics, Tome 27 (2019), pp. 55-70
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is an attempt to give the review of a part of our results in the area of singular partial differential equations. Using the results of the theory of complete generalized Jordan sets we consider the reduction of the PDE with the irreversible linear operator $B$ of finite index in the main differential expression to the regular problems. Earlier we and other authors applied similar methods to the development of Lyapunov alternative method in singular analysis and numerous applications in mechanics and mathematical physics. In this paper, we show how the problem of the choice of boundary conditions is connected with the $B$-Jordan structure of coefficients of PDE. The estimation of various approaches shows that the most efficient approach for solving this problem is the functional approach combined with the alternative Lyapunov method, Jordan structure coefficients and skeleton decomposition of irreversible linear operator in the main part of the equation. On this base, the problem of the correct choice of boundary conditions for a wide class of singular PDE can be solved. The aggregated theorems of existence and uniqueness of classical solutions can be proved with continuously depending of experimental definite function. The theory is illustrated by considering the solution of some integro-differential equations with partial derivatives.
Keywords: degenerate PDE, Banach space, Noether operator, boundary value problems.
Mots-clés : Jordan set
@article{IIGUM_2019_27_a4,
     author = {N. A. Sidorov},
     title = {Classic solutions of boundary value problems for partial differential equations with operator of finite index in the main part of equation},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {55--70},
     year = {2019},
     volume = {27},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2019_27_a4/}
}
TY  - JOUR
AU  - N. A. Sidorov
TI  - Classic solutions of boundary value problems for partial differential equations with operator of finite index in the main part of equation
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2019
SP  - 55
EP  - 70
VL  - 27
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2019_27_a4/
LA  - en
ID  - IIGUM_2019_27_a4
ER  - 
%0 Journal Article
%A N. A. Sidorov
%T Classic solutions of boundary value problems for partial differential equations with operator of finite index in the main part of equation
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2019
%P 55-70
%V 27
%U http://geodesic.mathdoc.fr/item/IIGUM_2019_27_a4/
%G en
%F IIGUM_2019_27_a4
N. A. Sidorov. Classic solutions of boundary value problems for partial differential equations with operator of finite index in the main part of equation. The Bulletin of Irkutsk State University. Series Mathematics, Tome 27 (2019), pp. 55-70. http://geodesic.mathdoc.fr/item/IIGUM_2019_27_a4/

[1] Falaleev M. V., Sidorov N. A., “Continuous and generalized solutions of singular differential equations”, Lobachevskii Journal of Mathematics, 20 (2005), 31–45 | MR | Zbl

[2] Leontyev R. Yu., Nonlinear equations in Banach spaces with a vector parameter in irregular cases, Irkutsk State University Publ., Irkutsk, 2011, 101 pp. (in Russian)

[3] O. Gorshanina (compiled), Loginov B. V. Bibliographic Index of Works, Series "ULTU Scientists, UlSTU Publ., Ulyanovsk, 2008, 59 pp.

[4] Lusternik L. A., “Some issues of nonlinear functional analysis”, Russian math. surveys, 11:6 (1956), 145–168 (in Russian) | MR | Zbl

[5] Muftahov I. R., Sidorov D. N., Sidorov N. A., “On the Perturbation method”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015), 69–80 | DOI

[6] Orlov S. S., Generalized solutions of high-order integro-differential equations in Banach spaces, Irkutsk State University Publ., Irkutsk, 2014, 149 pp. (in Russian)

[7] Rendon L., Sinitsyn A. V., Sidorov N. A., “Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov-Maxwell system”, Rev. Colombiana Math., 50:1 (2016), 85–107 | DOI | MR | Zbl

[8] Sidorov N. A., Blagodatskaya E. B., “Differential equations with a Fredholm operator in the leading differential expression”, Soviet math. Dokl., 44:1 (1992), 302–303

[9] Sidorov N. A., Romanova O. A., Blagodatskaya E. B., “Partial differential equations with an operator of finite index at the principal part”, Differ. Equations, 30:4 (1993), 676–678 | Zbl

[10] Sidorov N. A., Blagodatskaya E. B., “Differentsialnye uravneniya s fredgolmovym operatorom pri starshem differentsialnom vyrazhenii”, Preprinty IPM im. M.V. Keldysha, 1991, 001, 35 pp.

[11] Sidorov N. A., Loginov B. V., Sinithyn A. V., Falaleev M. V., Lyapunov-Schmidt methods in nonlinear analysis and applications, Mathematica and applications, 550, Springer, 2003, 558 pp. | DOI | MR

[12] Sidorov N. A., Sidorov D. N., “Existence and construction of generalized solutions of nonlinear Volterra integral equations of the first kind”, Differ. Equations, 42:9 (2006), 1312–1316 | DOI | MR | Zbl

[13] Sidorov N. A., Romanova O. A., “Difference-differential equations with fredholm operator in the main part”, The Bulletin of Irkutsk State University. Series Mathematics, 1:1 (2007), 254–266 (in Russian)

[14] Sidorov N. A., Romanova O. A., “On the construction of the trajectory of a single dynamic system with initial data on hyperplanes”, The Bulletin of Irkutsk State University. Series Mathematics, 2015, no. 12, 93–105 (in Russian)

[15] Sidorov D. N., Sidorov N. A., “Solution of irregular systems using skeleton decomposition of linear operators”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017), 63–73 | DOI | Zbl

[16] Sidorov N. A., Sidorov D. N., “On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels”, Math. Notes, 96:5 (2014), 811–826 | DOI | MR | Zbl

[17] Sidorov N. A., Leontiev R. Yu., Dreglea A. I., “On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhoods”, Math. Notes, 91:1 (2012), 90–104 | DOI | MR | Zbl

[18] Sidorov N. A., Sidorov D. N., “Small solutions of nonlinear differential equations near branching points”, Russian Math. (Iz. VUZ), 55:5 (2011), 43–50 | DOI | MR | Zbl

[19] Sidorov N. A., “Parametrization of simple branching solutions of full rank and iterations in nonlinear analysis”, Russian Math. (Iz. VUZ), 45:9 (2001), 55–61 | MR | Zbl

[20] Sidorov N. A., “Explicit and implicit parametrizations in the construction of branching solutions by iterative methods”, Sb. Math. J., 186:2 (1995), 297–310 | DOI | MR | MR | Zbl

[21] Sidorov N. A., “A class of degenerate differential equations with convergence”, Math. Notes, 35:4 (1984), 300–305 | DOI | MR | Zbl | Zbl

[22] Sidorov D. N., Sidorov N. A., “Convex majorants method in the theory of nonlinear Volterra equations”, Banach J. Math. Anal., 6:1 (2012), 1–10 | DOI | MR | Zbl

[23] Sidorov N. A., Sidorov D. N. Solving the Hammerstein integral equation in the irregular case by successive approximations, Siberian Math. J., 51:2 (2010), 325–329 | DOI | MR | Zbl

[24] Sidorov D. N., Integral Dynamical Models: Singularities, Signals and Control, World scientific series, nonlinear science, Series A, 87, ed. L. O. Chua, 2015, 243 pp. | DOI | MR | Zbl

[25] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, 2003, 228 pp. | MR | Zbl

[26] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov problem of the Sobolev type equations”, The Bulletin of Irkutsk State University. Series Mathematics, 3 (2010), 104–125 | Zbl

[27] Vainberg M. M., Trenogin V. A., The theory of branches of solutions of nonlinear equations, Wolters-Noordhoff, Groningen, 1974, 302 pp. | MR