@article{IIGUM_2018_25_a4,
author = {N. N. Martynov and O. V. Khandarova and F. V. Khandarov},
title = {Graph clustering based on modularity variation estimations},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {63--78},
year = {2018},
volume = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a4/}
}
TY - JOUR AU - N. N. Martynov AU - O. V. Khandarova AU - F. V. Khandarov TI - Graph clustering based on modularity variation estimations JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2018 SP - 63 EP - 78 VL - 25 UR - http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a4/ LA - ru ID - IIGUM_2018_25_a4 ER -
%0 Journal Article %A N. N. Martynov %A O. V. Khandarova %A F. V. Khandarov %T Graph clustering based on modularity variation estimations %J The Bulletin of Irkutsk State University. Series Mathematics %D 2018 %P 63-78 %V 25 %U http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a4/ %G ru %F IIGUM_2018_25_a4
N. N. Martynov; O. V. Khandarova; F. V. Khandarov. Graph clustering based on modularity variation estimations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 25 (2018), pp. 63-78. http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a4/
[1] Badmatsyrenov T. B., Skvortsov M. V., Khandarov F. V., “Buddhist digital practices of transcendence: VK-community “Hambo Lama Dashi-Dorzho Itigilov””, Monitoring of Public Opinion: Economic and Social Changes, 2018, no. 2, 309–332 (in Russian) | DOI
[2] Blondel V. D. et al., “Fast unfolding of communities in large networks”, Journal of statistical mechanics: theory and experiment, 2008:10 (2008), 10008 | DOI
[3] V. D. Blondel et al., “Fast unfolding of communities in large networks”, Journal of statistical mechanics: theory and experiment, 2008:10 (2008), 10008 | DOI
[4] Csardi G., Nepusz T., “The igraph software package for complex network research”, InterJournal, Complex Systems, 1695:5 (2006), 1–9
[5] Flake G. W., Lawrence S., Giles C. L., “Efficient identification of web communities”, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2000, 150–160 | DOI
[6] Fortunato S., “Community detection in graphs”, Physics reports, 486:3–5 (2010), 75–174 | DOI | MR
[7] Le Martelot E., Hankin C., “Fast multi-scale detection of relevant communities in large-scale networks”, The Computer Journal, 56:9 (2013), 1136–1150 | DOI
[8] J. Leskovec, K. J. Lang, A. Dasgupta, M. W. Mahoney, “Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters”, Internet Mathematics, 6:1 (2009), 29–123 | DOI | MR | Zbl
[9] Leskovec J., Lang K. J., Mahoney M., “Empirical comparison of algorithms for network community detection”, Proceedings of the 19th international conference on World wide web, ACM, 2010, 631–640 | DOI
[10] Maulik U., Bandyopadhyay S., “Genetic algorithm-based clustering technique”, Pattern recognition, 33:9 (2000), 1455–1465 | DOI
[11] Newman M. E. J., “Detecting community structure in networks”, The European Physical Journal B, 38:2 (2004), 321–330 | DOI | MR
[12] Pizzuti C., “A multiobjective genetic algorithm to find communities in complex networks”, IEEE Transactions on Evolutionary Computation, 16:3 (2012), 418–430 | DOI
[13] Pons P., Latapy M., “Computing communities in large networks using random walks”, Journal of Graph Algorithms and Applications, 10:2 (2006), 191–218 | DOI | MR | Zbl
[14] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, “Defining and identifying communities in networks”, Proceedings of the National Academy of Sciences, 101:9 (2004), 2658–2663 | DOI
[15] Raghavan U. N., Albert R., Kumara S., “Near linear time algorithm to detect community structures in large-scale networks”, Physical review E, 76:3 (2007), 036106 | DOI
[16] Reichardt J., Bornholdt S., “Statistical mechanics of community detection”, Physical Review E, 74:1 (2006), 016110 | DOI | MR