Mots-clés : d.c.-decomposition
@article{IIGUM_2016_18_a4,
author = {I. M. Minarchenko},
title = {Local search in quadratic two-person game},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {60--73},
year = {2016},
volume = {18},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_18_a4/}
}
I. M. Minarchenko. Local search in quadratic two-person game. The Bulletin of Irkutsk State University. Series Mathematics, Tome 18 (2016), pp. 60-73. http://geodesic.mathdoc.fr/item/IIGUM_2016_18_a4/
[1] Antipin A. S., Gradient and Extragradient Approaches in Bilinear Equilibrium Programming, Vychislitel'nyy Tsentr im. A. A. Dorodnitsyna RAN, M., 2002, 130 pp. (in Russian)
[2] Antipin A. S., “Equilibrium Programming: Gradient–Type Methods”, Avtomat. i Telemekh., 1997, no. 8, 125–137 (in Russian)
[3] Zukhovitskiy S. I., Polyak R. A., Primak M. E., “Many-Person Convex Games”, Economica i Mat. Metody, 7:6 (1971), 888–900 (in Russian)
[4] Strekalovskiy A. S., Orlov A. V., Bimatrix Games and Bilinear Programming, Fizmatlit, M., 2007, 224 pp. (in Russian)
[5] A. Dreves, “Finding All Solutions of Affine Generalized Nash Equilibrium Problems with One-dimensional Strategy Sets”, Math Meth Oper Res., 80 (2014), 139–159 | DOI | MR | Zbl
[6] S. D. Flam, A. Ruszczynski, “Finding Normalized Equilibrium in Convex-Concave Games”, International Game Theory Review, 10:1 (2008), 37–51 | DOI | MR | Zbl
[7] J. Garg, A. X. Jiang, R. Mehta, “Bilinear Games: Polynomial Time Algorithms for Rank Based Subclasses”, Internet and Network Economics, Lecture Notes in Computer Science, 7090, 2011, 399–407 | DOI
[8] A. von Heusinger, C. Kanzow, “Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search”, J. Optim. Theory Appl., 143 (2009), 159–183 | DOI | MR | Zbl
[9] J. Krawczyk, “Numerical Solutions to Coupled-Constraint (or Generalized Nash) Equilibrium Problems”, CMS, 4 (2007), 183–204 | DOI | MR | Zbl
[10] J. Krawczyk, S. Uryasev, “Relaxation Algorithms to Find Nash Equilibria with Economic Applications”, Environmental Modeling and Assessment, 5 (2000), 63–73 | DOI
[11] O. L. Mangasarian, “Equilibrium Points of Bimatrix Games”, Journal of the Society for Industrial and Applied Mathematics, 12 (1964), 778–780 | DOI | MR | Zbl
[12] H. Mills, “Equilibrium Points in Finite Games”, Journal of the Society for Industrial and Applied Mathematics, 8:2 (1960), 397–402 | DOI | MR | Zbl
[13] H. Nikaido, K. Isoda, “Note on Noncooperative Convex Games”, Pacific Journal of Mathematics, 5:5 (1955), 807–815 | DOI | MR
[14] T. Quint, M. Shubik, “A Theorem on the Number of Nash Equilibriua in a Bimatrix Game”, International Journal of Game Theory, 26 (1997), 353–359 | DOI | MR | Zbl
[15] J. B. Rosen, “Existence and Uniqueness of Equilibrium Points for Concave N-Person Games”, Econometrica, 33:3 (1965), 520–534 | DOI | MR | Zbl
[16] D. A. Schiro, J.-S. Pang, U. V. Shanbhag, “On the Solution of Affine Generalized Nash Equilibrium Problems with Shared Constraints by Lemke's Method”, Math. Program., Ser. A, 142 (2013), 1–46 | DOI | MR | Zbl
[17] A. S. Strekalovskiy, R. Enkhbat, “Polymatrix Games and Optimization Problems”, Automation and Remote Control, 75:4 (2014), 632–645 | DOI | MR
[18] A. S. Strekalovsky, “On Local Search in D.C. Optimization Problems”, Applied Mathematics and Computation, 255 (2015), 73–83 | DOI | MR | Zbl