@article{IIGUM_2013_6_4_a6,
author = {N. A. Sidorov},
title = {Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the {Vlasov{\textendash}Maxwell} system},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {85--106},
year = {2013},
volume = {6},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a6/}
}
TY - JOUR AU - N. A. Sidorov TI - Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov–Maxwell system JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2013 SP - 85 EP - 106 VL - 6 IS - 4 UR - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a6/ LA - en ID - IIGUM_2013_6_4_a6 ER -
%0 Journal Article %A N. A. Sidorov %T Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov–Maxwell system %J The Bulletin of Irkutsk State University. Series Mathematics %D 2013 %P 85-106 %V 6 %N 4 %U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a6/ %G en %F IIGUM_2013_6_4_a6
N. A. Sidorov. Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov–Maxwell system. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 4, pp. 85-106. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a6/
[1] P. Braasch, Semilineare elliptische Differentialgleichungen und das Vlasov–Maxwell-System, Dissertation, Herbert Utz Verlag Wissenschaft, Munchen, 1997 | Zbl
[2] C. C. Conley, Isolated invariant sets and the Morse index, CBMS. Regional Conf. Ser. Math., 38, AMS, Providence, R. I., 1978 | MR | Zbl
[3] Y. Guo, “Global weak solutions of the Vlasov–Maxwell system of plasma physics”, Commun. Math. Phys., 154 (1993), 245–263 | DOI | MR | Zbl
[4] Y. Guo, C. G. Ragazzo, “On steady states in a collisionless plasma”, Comm. Pure Appl. Math., 11 (1996), 1145–1174 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[5] H. Kielhöfer, “A bifurcation theorem for potential operators”, J. Funct. Anal., 77 (1988), 1–8 | DOI | MR | Zbl
[6] M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1964 | MR
[7] L. Kronecker, “It Uber systeme von functionen mehrerer variables”, Monats berichte de l'Academic ed Berlin, 1869, 159–198
[8] O. V. Ladyzhenskaya, N. N. Uralzeva, Linear and Nonlinear Equations of Elliptic Type, Nauka, M., 1964
[9] Y. A. Markov, G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, D. A. Tolstonogov, “Steady-state solutions of the Vlasov–Maxwell system and their stability”, Acta. Appl. Math., 28 (1992), 253–293 | DOI | MR | Zbl
[10] Y. A. Markov, G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Existence of stationary solutions of the Vlasov–Maxwell system Exact solutions”, Mathematical Modelling, 1 (1989), 95–107 | MR | Zbl
[11] G. Rein, “Generic global solutions of the relativistic Vlasov–Maxwell system with nearly neutral innitial data”, Commun. Math. Phys., 135 (1990), 41–78 | DOI | MR | Zbl
[12] G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Stationary solutions of the system of Vlasov–Maxwell system”, Doklady AN USSR, 33 (1988), 673–674 | MR
[13] N. A. Sidorov, A. V. Sinitsyn, “On nontrivial solutions and points of bifurcation of the Vlasov–Maxwell system”, Doklady RAN, 349 (1996), 26–28 | MR | Zbl
[14] N. A. Sidorov, A. V. Sinitsyn, “On branching of solutions of the Vlasov–Maxwell system”, Sibirsk. Matem. Zhyrnal, 37 (1996), 1367–1379 | MR | Zbl
[15] N. A. Sidorov, “On bifurcating solutions of the nonlinear equations with potential branching equation”, Doklady RAN, 23 (1981), 193–197 | Zbl
[16] N. A. Sidorov, V. A. Trenogin, Points and surfaces of bifurcation of nonlinear operators with potential branching systems, Preprint, Irkutsk Computing Center SB RAN, Irkutsk, 1991
[17] N. A. Sidorov, V. A. Trenogin, “Investigation of points of bifurcation and continuous branches of solutions of the nonlinear equations”, Differential and Integral Equations, Irkutsk University, Irkutsk, 1972, 216–248 | MR
[18] V. A. Trenogin, N. A. Sidorov, B. V. Loginov, “Potentiality, group symmetry and bifurcation in the theory of branching equations”, Different. and Integral Equat., 3 (1990), 145–154 | MR | Zbl
[19] M. M. Vainberg, V. A. Trenogin, Branching Theory of Solutions of Nonlinear Equations, Monographs and Textbooks on Pure and Applied Mathematics, Noordhoff International Publishing, Leyden, 1974 | MR | Zbl
[20] A. A. Vlasov, Theory of Many-particles, U.S. Atomic Energy Commission, Technical Information Service Extension, 1950
[21] N. A. Sidorov, B. V. Loginov, A. V. Sinitsyn, M. V. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Mathematics and Its Applications, 550, Springer Publ., 2003
[22] N. A. Sidorov, V. A. Trenogin, “Bifurcation Points of Nolinear Equations”, Nonlinear Analysis and Nonlinear Differential Equations, eds. V. A. Trenogin, A. T. Fillippov, Fizmatlit, M., 2003, 5–49 | MR | Zbl
[23] N. A. Sidorov, A. V. Sinitsyn, “Stationary Vlasov–Maxwell System in the Bounded Domain”, Nonlinear Analysis and Nonlinear Differential Equations, eds. V. A. Trenogin, A. T. Fillippov, Fizmatlit, M., 2003, 50–84 | MR
[24] B. V. Loginov, N. A. Sidorov, “Group Symmetry of the Lyapunov–Schmidt Branching Equation and Iterative Methods in the Problem of Bifurcation Points”, Matematicheskii Sbornik, 182:5 (1991), 681–690 | MR
[25] N. A. Sidorov, “Explicite and Implicite Parametrization in the Construction of Branching Solutions”, Matematicheskii Sbornik, 186:2 (1995), 129–140 | MR
[26] N. A. Sidorov, V. R. Abdullin, “Interlaced branching equations in the theory of non-linear equations”, Mat. Sb., 192:7 (2001), 107–124 | DOI | MR | Zbl
[27] N. A. Sidorov, A. V. Sinitsyn, “Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov–Maxwell system”, Mat. Zametki, 62:2 (1997), 268–292 | DOI | MR | Zbl
[28] N. A. Sidorov, A. V. Sinitsyn, “Index theory in the bifurcation problem of solutions of the Vlasov–Maxwell system”, Matem. Mod., 11:9 (1999), 83–100 | MR | Zbl
[29] N. A. Sidorov, A. V. Sinitsyn, “On bifurcation points of stationary Vlasov–Maxwell system with bifurcation directon”, European consortium for mathematics in industry. Progress in industrial mathematics at ECMI-1998 Conference (Teubner, Stuttgart, 1999), 292–230 | MR
[30] V. A. Trenogin, N. A. Sidorov, B. V. Loginov, “Bifurcation, Potentiality, Group-Theoretical and Iterative Methods”, Zeitschrift fur angewandte Mathematik und Mechanik, 76 (1996), 245–248 | DOI | Zbl
[31] G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “On Bifurcation Stationary Solutions of 2-Particle Vlasov–Maxwell System”, Doklady Akademii Nauk SSSR, 304:5 (1989), 1109–1112 | MR
[32] N. A. Sidorov, D. N. Sidorov, R. Yu. Leontiev, “Successive Approximations to Solutions of Nonlinear Equations with Vector Parameter in the Irregular Case”, Sibirskii Zhurnal Industrial'noi Matematiki, 15:1 (2012), 132–137 | MR
[33] N. A. Sidorov, D. N. Sidorov, “Existence and construction of generalized solutions of nonlinear Volterra integral equations of the first kind”, Differ. Equ., 42 (2006), 1312–1316 | DOI | MR | Zbl
[34] N. A. Sidorov, D. N. Sidorov, A. V. Krasnik, “Solution of Volterra operator-integral equations in the nonregular case by the successive approximation method”, Differ. Equ., 46 (2010), 882–891 | DOI | MR | Zbl
[35] V. V. Vedenyapin, A. V. Sinitsyn, E. Dulov, Kinetic Boltzmann, Vlasov and Related Equations, Elsevier Publ., 2011 | Zbl
[36] N. A. Sidorov, R. Yu. Leont'iev, A. I. Dreglea, “On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhood”, Mathematical Notes, 91:1 (2012), 90–104 | DOI | Zbl
[37] N. A. Sidorov, D. N. Sidorov, “Small solutions of nonlinear differential equations near branching points”, Russ. Math., 55:5 (2011), 43–50 | DOI | MR | Zbl