Migration-Proof Organization of a Linear World: Existence Theorem
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 2, pp. 57-68
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, a uni-dimensional version of the uncapacitated facility location problem is analysed from the angle of Nash-type (i.e. migrational) stability of group structures. A general result is proved that, under arbitrary population distribution admitting a strictly positive density, migration-proof solution comprised of prescribed number of groups always exists. To prove the theorem, a celebrated Nikaido–Gale–Debre Lemma is being utilized.
Keywords:
Uncapacitated facility location problem, non-atomic games, migration-proofness, Nash stability
Mots-clés : group structures, Nikaido–Gale–Debre Lemma.
Mots-clés : group structures, Nikaido–Gale–Debre Lemma.
@article{IIGUM_2013_6_2_a5,
author = {A. V. Savvateev},
title = {Migration-Proof {Organization} of a {Linear} {World:} {Existence} {Theorem}},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {57--68},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a5/}
}
TY - JOUR AU - A. V. Savvateev TI - Migration-Proof Organization of a Linear World: Existence Theorem JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2013 SP - 57 EP - 68 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a5/ LA - ru ID - IIGUM_2013_6_2_a5 ER -
A. V. Savvateev. Migration-Proof Organization of a Linear World: Existence Theorem. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 2, pp. 57-68. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a5/