Migration-Proof Organization of a Linear World: Existence Theorem
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 2, pp. 57-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, a uni-dimensional version of the uncapacitated facility location problem is analysed from the angle of Nash-type (i.e. migrational) stability of group structures. A general result is proved that, under arbitrary population distribution admitting a strictly positive density, migration-proof solution comprised of prescribed number of groups always exists. To prove the theorem, a celebrated Nikaido–Gale–Debre Lemma is being utilized.
Keywords: Uncapacitated facility location problem, non-atomic games, migration-proofness, Nash stability
Mots-clés : group structures, Nikaido–Gale–Debre Lemma.
@article{IIGUM_2013_6_2_a5,
     author = {A. V. Savvateev},
     title = {Migration-Proof {Organization} of a {Linear} {World:} {Existence} {Theorem}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {57--68},
     year = {2013},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a5/}
}
TY  - JOUR
AU  - A. V. Savvateev
TI  - Migration-Proof Organization of a Linear World: Existence Theorem
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 57
EP  - 68
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a5/
LA  - ru
ID  - IIGUM_2013_6_2_a5
ER  - 
%0 Journal Article
%A A. V. Savvateev
%T Migration-Proof Organization of a Linear World: Existence Theorem
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 57-68
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a5/
%G ru
%F IIGUM_2013_6_2_a5
A. V. Savvateev. Migration-Proof Organization of a Linear World: Existence Theorem. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 2, pp. 57-68. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a5/

[1] R. Aumann, L. Shepli, Znacheniya dlya neatomicheskikh igr, Mir, M., 1977, 358 pp. | MR

[2] S. A. Vartanov, “Ob ustoichivosti k raskolu ravnovesii v modeli endogennogo formirovaniya koalitsii”, Mat. teoriya igr i ee prilozheniya, 4:1 (2012), 3–21 | MR

[3] S. A. Vartanov, Yu. V. Sosina, “O strukture ravnovesii Nesha i ikh ustoichivosti k lokalnomu ob'edineniyu v modeli endogennogo formirovaniya koalitsii”, Mat. modelirovanie, 25:4 (2013), 44–64 | MR

[4] R. Kurant, G. Robbins, Chto takoe matematika?, MTsNMO, M.–L., 2007, 568 pp.

[5] D. V. Musatov, Suschestvovanie ustoichivogo razbieniya na gruppy pri ubyvayuschei plotnosti naseleniya, dipl. rabota, RESh, 2008

[6] A. V. Savvateev, “Koalitsionnaya ustoichivost “bipolyarnogo mira””, Zhurn. Novoi ekon. assotsiatsii, 17 (2013), 10–44

[7] Kh. Nikaido, Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972, 519 pp.

[8] A. Alesina, E. Spolaore, “On the number and size of nations”, Quarterly Journal of Economics, 113 (1997), 1027–1056 | DOI

[9] D. Black, “On the Rationale of Group Decision Making”, Journal of Political Economy, 56 (1948), 23–24 | DOI

[10] A. Bogomolnaia, M. Le Breton, A. Savvateev, S. Weber, “Stability of jurisdiction structures under the equal share and median rules”, Economic Theory, 3 (2008), 523–543 | MR

[11] A. Bogomolnaia, M. Le Breton, A. Savvateev, S. Weber, “Stability under unanimous consent, free mobility and core”, International Journal of Game Theory, 35 (2007), 185–204 | DOI | MR | Zbl

[12] A. Bogomolnaia, M. Le Breton, A. Savvateev, S. Weber, “The egalitarian sharing rule in provision of public projects”, Economics Bulletin, 8:11 (2005), 1–5

[13] A. Bogomolnaia, M. Le Breton, A. Savvateev, S. Weber, “Heterogeneity Gap in Unidimensional Spatial Models”, Journal of Public Economic Theory, 10 (2008), 455–473 | DOI

[14] Central places in Southern Germany, Prentice Hall, Englewood Cliffs, 1966

[15] G. Cornuejols, G. L. Nemhauser, L. A. Wolsey, “The uncapacitated facility location problem”, Discrete Location Theory, eds. P. Mirchandani, R. Francis, John Wiley and Sons, NYC, N. Y., 1990, 119–171 | MR

[16] J. Drèze, M. Le Breton, S. Weber, “Rawlsian Pricing of Access to Public Facilities: a Unidimensional Illustration”, Journal of Economic Theory, 136 (2007), 759–766 | DOI | MR | Zbl

[17] J. Drèze, M. Le Breton, A. Savvateev, S. Weber, ““Almost” subsidy-free spatial pricing in a multidimensional setting”, Journal of Economic Theory, 143 (2008), 275–291 | DOI | MR | Zbl

[18] M. X. Goemans, M. Skutella, “Cooperative facility location games”, Journal of Algorithms, 50 (2004), 192–214 | DOI | MR

[19] J. Greenberg, S. Weber, “Strong Tiebout Equilibrium under Restricted Preferences Domain”, Journal of Economic Theory, 38 (1986), 101–117 | DOI | MR | Zbl

[20] O. Haimanko, M. Le Breton, S. Weber, “Voluntary formation of communities for the provision of public projects”, Journal of Economic Theory, 115 (2004), 1–34 | DOI | MR | Zbl

[21] A. Lösch, The Economics of Location, Yale Univ., New Haven, CT, 1954

[22] A. Mas-Colell, M. D. Whinston, J. R. Green, Microeconomic Theory, Oxford University Press, Oxford, 1995 | Zbl

[23] A. V. Savvateev, “Uni-dimensional models of coalition formation: non-existence of stable partitions”, Moscow Journal of Combinatorics and Number Theory, 2:4 (2012), 49–62 | MR

[24] C. Tiebout, “A Pure Theory of Local Expenditures”, The Journal of Political Economy, 64:5 (1956), 416–24 | DOI

[25] F. Westhoff, “Existence of Equilibria in Economies With a Local Public Good”, Journal of Economic Theory, 17 (1977), 84–112 | DOI | MR