Construction of the asymptotics of solutions of nonlinear boundary value problems for fourth order differential equation with two bifurcation parameters
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 1, pp. 2-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Methods of many-parameter bifurcation theory are illustrated by the example of nonlinear boundary value problem of aeroelasticity. Bending forms of a thin elongated plate subjected to small normal load on elastic foundation and flowing around by supersonic flow of a gas in dimensionless variables are described by ODE of 4-th order with two bifurcational (spectral) parameters: Mach number $M$ and small normal load $\varepsilon_0q$. By bifurcation and catastrophe theory methods the bending forms computations are fulfilled for the boundary conditions $B$ (the left edge is free, the right one is rigidly fixed). Technical difficulties arising at the investigation of the linearized eigenvalue problem are overcome with the aid of the bifurcation curves representation through the roots of the relevant characteristic equation. Fredholm property of the linearized problem is proved with the aid of relevant Green function construction.
Keywords: boundary value problem of ordinary differential equations of higher order; multi-parameter bifurcation; plate in supersonic gas flow; plate deflection, discriminant curve; branching equation.
@article{IIGUM_2012_5_1_a0,
     author = {T. E. Badokina and B. V. Loginov and Yu. B. Rusak},
     title = {Construction of the asymptotics of solutions of nonlinear boundary value problems for fourth order differential equation with two bifurcation parameters},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {2--12},
     year = {2012},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a0/}
}
TY  - JOUR
AU  - T. E. Badokina
AU  - B. V. Loginov
AU  - Yu. B. Rusak
TI  - Construction of the asymptotics of solutions of nonlinear boundary value problems for fourth order differential equation with two bifurcation parameters
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 2
EP  - 12
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a0/
LA  - ru
ID  - IIGUM_2012_5_1_a0
ER  - 
%0 Journal Article
%A T. E. Badokina
%A B. V. Loginov
%A Yu. B. Rusak
%T Construction of the asymptotics of solutions of nonlinear boundary value problems for fourth order differential equation with two bifurcation parameters
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 2-12
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a0/
%G ru
%F IIGUM_2012_5_1_a0
T. E. Badokina; B. V. Loginov; Yu. B. Rusak. Construction of the asymptotics of solutions of nonlinear boundary value problems for fourth order differential equation with two bifurcation parameters. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 1, pp. 2-12. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_1_a0/

[1] V. V. Bolotin, Nekonservativnye zadachi uprugoi ustoichivosti, GIFML, M., 1961, 339 pp. | MR

[2] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969, 524 pp. | MR

[3] A. S. Volmir, Ustoichivost deformiruemykh sistem, Nauka, M., 1967, 984 pp.

[4] I. S. Iokhvidov, Gankelevy i teplitsevy matritsy i formy, Nauka, M., 1974, 263 pp. | MR | Zbl

[5] A. G. Kurosh, Kurs vysshei algebry, Nauka, M., 1965, 431 pp. | MR

[6] B. V. Loginov, “Zadacha o divergentsii kryla kak primer teorii vetvleniya reshenii nelineinykh uravnenii s dvumya malymi parametrami”, DU i ikh prilozheniya, cb. nauch. tr., Tashkent, 1979, 109–113 | MR

[7] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969, 528 pp. | MR | Zbl

[8] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980, 496 pp. | MR | Zbl