The Leontief type systems: classes of problems with the Showalter–Sidorov intial condition and numerical solving
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 2, pp. 30-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains the review of the results obtained by the author during the last years in the sphere of a numerical methods of solving optimal control problem for the Leontief type system with the Showalter–Sidorov intial condition. The base of the research is a numerical algorithm for solving Showalter–Sidorov problem. The article includes numerical solutions for some concrete problems.
Keywords: the Leontief type system; a numerical solving; the Showalter–Sidorov intial condition; optimal control.
@article{IIGUM_2010_3_2_a3,
     author = {A. V. Keller},
     title = {The {Leontief} type systems: classes of problems with the {Showalter{\textendash}Sidorov} intial condition and numerical solving},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {30--43},
     year = {2010},
     volume = {3},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a3/}
}
TY  - JOUR
AU  - A. V. Keller
TI  - The Leontief type systems: classes of problems with the Showalter–Sidorov intial condition and numerical solving
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 30
EP  - 43
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a3/
LA  - ru
ID  - IIGUM_2010_3_2_a3
ER  - 
%0 Journal Article
%A A. V. Keller
%T The Leontief type systems: classes of problems with the Showalter–Sidorov intial condition and numerical solving
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 30-43
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a3/
%G ru
%F IIGUM_2010_3_2_a3
A. V. Keller. The Leontief type systems: classes of problems with the Showalter–Sidorov intial condition and numerical solving. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 2, pp. 30-43. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_2_a3/

[1] M. N. Bizyaev, Dinamicheskie modeli i algoritmy vosstanovleniya dinamicheski iskazhennykh signalov izmeritelnykh sistem v skolzyaschem rezhime, diss. ... kand. tekh. nauk, YuUrGU, Chelyabinsk, 2004

[2] Yu. E. Boyarintsev, Lineinye i nelineinye algebro-differentsialnye sistemy, Nauka, Novosibirsk, 2000 | Zbl

[3] Yu. E. Boyarintsev, I. V. Orlova, Puchki matrits i algebro-differentsialnye sistemy, Nauka, Novosibirsk, 2006

[4] S. V. Brychev, Issledovanie matematicheskoi modeli ekonomiki kommunalnogo khozyaistva malykh gorodov, Diss. ... kand. fiz.-mat. nauk, Chelyabinskii gos. un-t, 2002 | MR

[5] F. R. Gantmakher, Teoriya matrits, 4-oe izdanie, Nauka, M., 1988, 552 pp. | MR | Zbl

[6] S. A. Zagrebina, “O zadache Shouoltera–Sidorova”, Izv. vuzov. Matematika, 2007, no. 3, 22–28 | MR | Zbl

[7] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vysokogo poryadka”, Vychislitelnye tekhnologii, 8:3 (2003), 45–54 | Zbl

[8] A. V. Keller, “Algoritm chislennogo resheniya zadachi Shouoltera–Sidorova dlya sistem leontevskogo tipa”, Metody optimizatsii i ikh prilozheniya, trudy XIV Baikalskoi shkoly-seminara, Irkutsk–Severobaikalsk, 2008, 343–350

[9] A. V. Keller, “Chislennoe reshenie zadachi optimalnogo upravleniya vyrozhdennoi lineinoi sistemoi obyknovennykh differentsialnykh uravnenii s nachalnymi usloviyami Shouoltera–Sidorova”, Vestnik YuUrGU. Seriya Mat. modelirovanie i programmirovanie, 2008, no. 27 (127), Vyp. 2, 50–56 | Zbl

[10] Leontev V. V., Mezhotraslevaya ekonomika, Ekonomika, M., 1997

[11] B. V. Pavlov, A. Ya. Povzner, “Ob odnom metode chislennogo integrirovaniya sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 13:4 (1973), 1056–1059 | MR | Zbl

[12] B. V. Pavlov, O. E. Radionova, “Chislennoe reshenie sistem lineinykh obyknovennykh differentsialnykh uravnenii s postoyannymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 622–627 | MR | Zbl

[13] G. A. Sviridyuk, S. V. Brychev, “Chislennoe reshenie sistem uravnenii leontevskogo tipa”, Izv. vuzov. Matematika, 2003, no. 8, 46–52 | MR | Zbl

[14] G. A. Sviridyuk, I. V. Burlachko, “Algoritm resheniya zadachi Koshi dlya vyrozhdennykh lineinykh sistem obyknovennykh differentsialnykh uravnenii s postoyannymi koeffitsientami”, ZhVMiMF, 43:11 (2003), 1677–1683 | MR | Zbl

[15] G. A. Sviridyuk, A. A. Efremov, “Zadacha optimalnogo upravleniya dlya odnogo klassa lineinykh uravnenii tipa Soboleva”, Izv. vuzov. Matematika, 1996, no. 12, 75–83 | MR | Zbl

[16] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[17] V. E. Fedorov, M. V. Plekhanova, “Zadacha optimalnogo upravleniya dlya odnogo klassa vyrozhdennykh uravnenii”, Izv. RAN. Teoriya i sistemy upravleniya, 9:2 (2004), 92–102 | MR | Zbl

[18] V. F. Chistyakov, A. A. Scheglova, Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003 | MR | Zbl

[19] A. L. Shestakov, G. A. Sviridyuk, E. V. Zakharova, “Dinamicheskie izmereniya kak zadacha optimalnogo upravleniya”, Obozrenie prikladnoi i promyshlennoi matematiki, 16:4 (2009), 732–733