Degenerated integro-differential equation in Banach spaces and its application
The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 1, pp. 54-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the study Cauchy problem for a linear integro-differential operator equation with convolutional type Volterra integral part and Fredholm operator by the derivative of highest order. Sufficient conditions of classical ($N$ times strongly continuously differentiable) solution existence and uniqueness, as well as explicit formulas for its restoration are obtained. These results are applyed to the investigation of initial boundary value problem, arising in mathematical theory of viscoelacity.
Keywords: Banach space, integro-differential equation, generalized Jordan structure, Fredholm operator.
@article{IIGUM_2010_3_1_a5,
     author = {S. S. Orlov},
     title = {Degenerated integro-differential equation in {Banach} spaces and its application},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {54--60},
     year = {2010},
     volume = {3},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a5/}
}
TY  - JOUR
AU  - S. S. Orlov
TI  - Degenerated integro-differential equation in Banach spaces and its application
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2010
SP  - 54
EP  - 60
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a5/
LA  - ru
ID  - IIGUM_2010_3_1_a5
ER  - 
%0 Journal Article
%A S. S. Orlov
%T Degenerated integro-differential equation in Banach spaces and its application
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2010
%P 54-60
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a5/
%G ru
%F IIGUM_2010_3_1_a5
S. S. Orlov. Degenerated integro-differential equation in Banach spaces and its application. The Bulletin of Irkutsk State University. Series Mathematics, Tome 3 (2010) no. 1, pp. 54-60. http://geodesic.mathdoc.fr/item/IIGUM_2010_3_1_a5/

[1] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969, 528 pp. | MR

[2] N. A. Sidorov, O. A. Romanova, “O primenenii nekotorykh rezultatov teorii vetvleniya pri reshenii differentsialnykh uravnenii s vyrozhdeniem”, Differents. uravneniya, 19:9 (1983), 1516–1526 | MR | Zbl

[3] M. V. Falaleev, Teoriya fundamentalnykh operator-funktsii vyrozhdennykh integro-differentsialnykh operatorov v banakhovykh prostranstvakh, dis. ... d-ra fiz.-mat. nauk, Irkutsk, 2008, 238 pp.

[4] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, “Existence and Uniform Decay for a Non-Linear Viscoelastic Equation with Strong Damping”, Math. Meth. Appl. Sci., 24 (2001), 1043–1053 | DOI | MR | Zbl

[5] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 2002, 548 pp. | MR | Zbl