Subgroups of genus-2 quasi-Fuchsian groups and cocompact Kleinian groups
Geometry & topology, Tome 29 (2025) no. 1, pp. 495-548.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We wish to control the geometry of some surface subgroups of a cocompact Kleinian group. More precisely, provided any genus-2 quasi-Fuchsian group Γ and cocompact Kleinian group G, then for any ν > 0 we will find a surface subgroup H of G that is (1+ν)-quasiconformally conjugate to a finite-index subgroup F < Γ.

Keywords: quasi-Fuchsian groups, hyperbolic $3$-manifolds, surface subgroups

Rao, Zhenghao 1

1 Department of Mathematics, Rutgers University, Piscataway, NJ, United States, Department of Mathematics, Brown University, Providence, RI, United States
@article{GT_2025_29_1_a12,
     author = {Rao, Zhenghao},
     title = {Subgroups of genus-2 {quasi-Fuchsian} groups and cocompact {Kleinian} groups},
     journal = {Geometry & topology},
     pages = {495--548},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2025},
     url = {http://geodesic.mathdoc.fr/item/GT_2025_29_1_a12/}
}
TY  - JOUR
AU  - Rao, Zhenghao
TI  - Subgroups of genus-2 quasi-Fuchsian groups and cocompact Kleinian groups
JO  - Geometry & topology
PY  - 2025
SP  - 495
EP  - 548
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2025_29_1_a12/
ID  - GT_2025_29_1_a12
ER  - 
%0 Journal Article
%A Rao, Zhenghao
%T Subgroups of genus-2 quasi-Fuchsian groups and cocompact Kleinian groups
%J Geometry & topology
%D 2025
%P 495-548
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2025_29_1_a12/
%F GT_2025_29_1_a12
Rao, Zhenghao. Subgroups of genus-2 quasi-Fuchsian groups and cocompact Kleinian groups. Geometry & topology, Tome 29 (2025) no. 1, pp. 495-548. http://geodesic.mathdoc.fr/item/GT_2025_29_1_a12/

[1] K Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994) 37 | DOI

[2] M D Baker, D Cooper, Finite-volume hyperbolic 3-manifolds contain immersed quasi-Fuchsian surfaces, Algebr. Geom. Topol. 15 (2015) 1199 | DOI

[3] M Bestvina, K Bromberg, K Fujiwara, J Souto, Shearing coordinates and convexity of length functions on Teichmüller space, Amer. J. Math. 135 (2013) 1449 | DOI

[4] L Bowen, Free groups in lattices, Geom. Topol. 13 (2009) 3021 | DOI

[5] J F Brock, The Weil–Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003) 495 | DOI

[6] D Cooper, D Futer, Ubiquitous quasi-Fuchsian surfaces in cusped hyperbolic 3-manifolds, Geom. Topol. 23 (2019) 241 | DOI

[7] F W Gehring, J Väisälä, Hausdorff dimension and quasiconformal mappings, J. Lond. Math. Soc. 6 (1973) 504 | DOI

[8] U Hamenstädt, Incompressible surfaces in rank one locally symmetric spaces, Geom. Funct. Anal. 25 (2015) 815 | DOI

[9] J Kahn, V Marković, Counting essential surfaces in a closed hyperbolic three-manifold, Geom. Topol. 16 (2012) 601 | DOI

[10] J Kahn, V Marković, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127 | DOI

[11] J Kahn, V Marković, The good pants homology and the Ehrenpreis conjecture, Ann. of Math. 182 (2015) 1 | DOI

[12] J Kahn, A Wright, Nearly Fuchsian surface subgroups of finite covolume Kleinian groups, Duke Math. J. 170 (2021) 503 | DOI

[13] J Kahn, F Labourie, S Mozes, Surface groups in uniform lattices of some semi-simple groups, preprint (2018)

[14] J Kahn, V Marković, I Smilga, Geometrically and topologically random surfaces in a closed hyperbolic three manifold, preprint (2023)

[15] C Kourouniotis, Complex length coordinates for quasi-Fuchsian groups, Mathematika 41 (1994) 173 | DOI

[16] Y Liu, V Marković, Homology of curves and surfaces in closed hyperbolic 3-manifolds, Duke Math. J. 164 (2015) 2723 | DOI

[17] J D Masters, X Zhang, Closed quasi-Fuchsian surfaces in hyperbolic knot complements, Geom. Topol. 12 (2008) 2095 | DOI

[18] J D Masters, X Zhang, Quasi-Fuchsian surfaces in hyperbolic link complements, preprint (2009)

[19] D Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982) 99 | DOI

[20] A Selberg, On discontinuous groups in higher-dimensional symmetric spaces, from: "Contributions to function theory", Tata Inst. Fund. Res. (1960) 147

[21] H Shiga, On the hyperbolic length and quasiconformal mappings, Complex Var. Theory Appl. 50 (2005) 123 | DOI

[22] S P Tan, Complex Fenchel–Nielsen coordinates for quasi-Fuchsian structures, Int. J. Math. 5 (1994) 239 | DOI

[23] M Tsuji, Potential theory in modern function theory, Maruzen (1959) 590

[24] S Werner, Spiegelungskoeffizient und Fredholmscher Eigenwert für gewisse Polygone, Ann. Acad. Sci. Fenn. Math. 22 (1997) 165

[25] F Zhu, Metrics and coordinates on Teichmüller space, (2017)