Homological mirror symmetry for log Calabi–Yau surfaces
Geometry & topology, Tome 26 (2022) no. 8, pp. 3747-3833.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a log Calabi–Yau surface Y with maximal boundary D and distinguished complex structure, we explain how to construct a mirror Lefschetz fibration w: M , where M is a Weinstein four-manifold, such that the directed Fukaya category of w is isomorphic to Db Coh(Y ), and the wrapped Fukaya category Db𝒲(M) is isomorphic to Db Coh(Y D). We construct an explicit isomorphism between M and the total space of the almost-toric fibration arising in work of Gross, Hacking and Keel (Publ. Math. Inst. Hautes Études Sci. 122 (2015) 65–168); when D is negative definite this is expected to be the Milnor fibre of a smoothing of the dual cusp of D. We also match our mirror potential w with existing constructions for a range of special cases of (Y,D), notably those of Auroux, Katzarkov and Orlov (Invent. Math. 166 (2006) 537–582) and Abouzaid (Selecta Math. 15 (2009) 189–270).

Keywords: cusp singularities, homological mirror symmetry, Fukaya categories, coherent sheaves, Lefschetz fibrations

Hacking, Paul 1 ; Keating, Ailsa 2

1 Department of Mathematics and Statistics, University of Massachusetts, Amherst, Amherst, MA, United States
2 Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
@article{GT_2022_26_8_a5,
     author = {Hacking, Paul and Keating, Ailsa},
     title = {Homological mirror symmetry for log {Calabi{\textendash}Yau} surfaces},
     journal = {Geometry & topology},
     pages = {3747--3833},
     publisher = {mathdoc},
     volume = {26},
     number = {8},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/GT_2022_26_8_a5/}
}
TY  - JOUR
AU  - Hacking, Paul
AU  - Keating, Ailsa
TI  - Homological mirror symmetry for log Calabi–Yau surfaces
JO  - Geometry & topology
PY  - 2022
SP  - 3747
EP  - 3833
VL  - 26
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2022_26_8_a5/
ID  - GT_2022_26_8_a5
ER  - 
%0 Journal Article
%A Hacking, Paul
%A Keating, Ailsa
%T Homological mirror symmetry for log Calabi–Yau surfaces
%J Geometry & topology
%D 2022
%P 3747-3833
%V 26
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2022_26_8_a5/
%F GT_2022_26_8_a5
Hacking, Paul; Keating, Ailsa. Homological mirror symmetry for log Calabi–Yau surfaces. Geometry & topology, Tome 26 (2022) no. 8, pp. 3747-3833. http://geodesic.mathdoc.fr/item/GT_2022_26_8_a5/

[1] M Abouzaid, Homogeneous coordinate rings and mirror symmetry for toric varieties, Geom. Topol. 10 (2006) 1097 | DOI

[2] M Abouzaid, Morse homology, tropical geometry, and homological mirror symmetry for toric varieties, Selecta Math. 15 (2009) 189 | DOI

[3] M Abouzaid, D Auroux, L Katzarkov, Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces, Publ. Math. Inst. Hautes Études Sci. 123 (2016) 199 | DOI

[4] M Abouzaid, P Seidel, Lefschetz fibration techniques in wrapped Floer cohomology, in preparation

[5] B Acu, O Capovilla-Searle, A Gadbled, A Marinković, E Murphy, L Starkston, A Wu, An introduction to Weinstein handlebodies for complements of smoothed toric divisors, from: "Research directions in symplectic and contact geometry and topology" (editors B Acu, C Cannizzo, D McDuff, Z Myer, Y Pan, L Traynor), Assoc. Women Math. Ser. 27, Springer (2021) 217 | DOI

[6] D Auroux, Mirror symmetry and T–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007) 51

[7] D Auroux, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, from: "Surveys in differential geometry, XIII : Geometry, analysis, and algebraic geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 13, International (2009) 1 | DOI

[8] D Auroux, L Katzarkov, D Orlov, Mirror symmetry for del Pezzo surfaces : vanishing cycles and coherent sheaves, Invent. Math. 166 (2006) 537 | DOI

[9] D Auroux, L Katzarkov, D Orlov, Mirror symmetry for weighted projective planes and their noncommutative deformations, Ann. of Math. 167 (2008) 867 | DOI

[10] A A Beilinson, Coherent sheaves on Pn and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978) 68

[11] P Biran, O Cornea, Lagrangian cobordism, I, J. Amer. Math. Soc. 26 (2013) 295 | DOI

[12] J Blanc, Symplectic birational transformations of the plane, Osaka J. Math. 50 (2013) 573

[13] T Bridgeland, D Stern, Helices on del Pezzo surfaces and tilting Calabi–Yau algebras, Adv. Math. 224 (2010) 1672 | DOI

[14] R Casals, E Murphy, Legendrian fronts for affine varieties, Duke Math. J. 168 (2019) 225 | DOI

[15] K Chan, SYZ mirror symmetry for toric varieties, from: "Handbook for mirror symmetry of Calabi–Yau Fano manifolds" (editors L Ji, B Wu, S T Yau), Adv. Lect. Math. 47, International (2020) 1

[16] K Chan, C H Cho, S C Lau, H H Tseng, Gross fibrations, SYZ mirror symmetry, and open Gromov–Witten invariants for toric Calabi–Yau orbifolds, J. Differential Geom. 103 (2016) 207

[17] K Chan, S C Lau, N C Leung, SYZ mirror symmetry for toric Calabi–Yau manifolds, J. Differential Geom. 90 (2012) 177

[18] C H Cho, Y G Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006) 773 | DOI

[19] K Cieliebak, Y Eliashberg, From Stein to Weinstein and back : symplectic geometry of affine complex manifolds, 59, Amer. Math. Soc. (2012) | DOI

[20] A Corti, A S Kaloghiros, The Sarkisov program for Mori fibred Calabi–Yau pairs, Algebr. Geom. 3 (2016) 370 | DOI

[21] P Deligne, Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5 | DOI

[22] G Dimitroglou Rizell, E Goodman, A Ivrii, Lagrangian isotopy of tori in S2 ×S2 and CP2, Geom. Funct. Anal. 26 (2016) 1297 | DOI

[23] P Engel, R Friedman, Smoothings and rational double point adjacencies for cusp singularities, J. Differential Geom. 118 (2021) 23 | DOI

[24] B Fang, C C M Liu, D Treumann, E Zaslow, T-duality and homological mirror symmetry for toric varieties, Adv. Math. 229 (2012) 1875 | DOI

[25] A Fathi, F Laudenbach, V Poénaru, Thurston’s work on surfaces, 48, Princeton Univ. Press (2012)

[26] R Friedman, On the geometry of anticanonical pairs, (2015)

[27] W Fulton, Introduction to toric varieties, 131, Princeton Univ. Press (1993) | DOI

[28] M Futaki, K Ueda, Exact Lefschetz fibrations associated with dimer models, Math. Res. Lett. 17 (2010) 1029 | DOI

[29] S Ganatra, J Pardon, V Shende, Sectorial descent for wrapped Fukaya categories, (2019)

[30] E Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Higher Ed. Press (2002) 405

[31] E Giroux, J Pardon, Existence of Lefschetz fibrations on Stein and Weinstein domains, Geom. Topol. 21 (2017) 963 | DOI

[32] A B Givental, Homological geometry and mirror symmetry, from: "Proceedings of the International Congress of Mathematicians" (editor S D Chatterji), Birkhäuser (1995) 472

[33] A L Gorodentsev, S A Kuleshov, Helix theory, Mosc. Math. J. 4 (2004) 377 | DOI

[34] M Gross, Special Lagrangian fibrations, I : Topology, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Sci. (1998) 156

[35] M Gross, Special Lagrangian fibrations, II : Geometry—A survey of techniques in the study of special Lagrangian fibrations, from: "Surveys in differential geometry: differential geometry inspired by string theory" (editor S T Yau), Surv. Differ. Geom. 5, International (1999) 341 | DOI

[36] M Gross, P Hacking, S Keel, Birational geometry of cluster algebras, Algebr. Geom. 2 (2015) 137 | DOI

[37] M Gross, P Hacking, S Keel, Mirror symmetry for log Calabi–Yau surfaces, I, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 65 | DOI

[38] M Gross, P Hacking, S Keel, Moduli of surfaces with an anti-canonical cycle, Compos. Math. 151 (2015) 265 | DOI

[39] M Gross, B Siebert, Mirror symmetry via logarithmic degeneration data, I, J. Differential Geom. 72 (2006) 169

[40] M Gross, B Siebert, Mirror symmetry via logarithmic degeneration data, II, J. Algebraic Geom. 19 (2010) 679 | DOI

[41] M Gross, B Siebert, From real affine geometry to complex geometry, Ann. of Math. 174 (2011) 1301 | DOI

[42] A Hanlon, Monodromy of monomially admissible Fukaya–Seidel categories mirror to toric varieties, Adv. Math. 350 (2019) 662 | DOI

[43] K Hori, Mirror symmetry and quantum geometry, from: "Proceedings of the International Congress of Mathematicians" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Higher Ed. Press (2002) 431

[44] K Hori, C Vafa, Mirror symmetry, (2000)

[45] D Huybrechts, Fourier–Mukai transforms in algebraic geometry, Clarendon (2006) | DOI

[46] A Keating, Homological mirror symmetry for hypersurface cusp singularities, Selecta Math. 24 (2018) 1411 | DOI

[47] A Keating, On symplectic stabilisations and mapping classes, Bull. Lond. Math. Soc. 54 (2022) 718 | DOI

[48] O Van Koert, Lecture notes on stabilization of contact open books, Münster J. Math. 10 (2017) 425 | DOI

[49] J Kollár, K E Smith, A Corti, Rational and nearly rational varieties, 92, Cambridge Univ. Press (2004) | DOI

[50] M. Kontsevich, lecture notes taken by J Bellaiche, J-F Dat, I Marin, G Racinet and H Randriambololona (1998)

[51] S A Kuleshov, D O Orlov, Exceptional sheaves on Del Pezzo surfaces, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994) 53

[52] Y Lekili, T Perutz, Arithmetic mirror symmetry for the 2–torus, (2012)

[53] Y Lekili, A Polishchuk, Arithmetic mirror symmetry for genus 1 curves with n marked points, Selecta Math. 23 (2017) 1851 | DOI

[54] E Looijenga, Rational surfaces with an anticanonical cycle, Ann. of Math. 114 (1981) 267 | DOI

[55] V A Lunts, D O Orlov, Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010) 853 | DOI

[56] J Milnor, Lectures on the h–cobordism theorem, Princeton Univ. Press (1965)

[57] H Ohta, K Ono, Symplectic fillings of the link of simple elliptic singularities, J. Reine Angew. Math. 565 (2003) 183 | DOI

[58] D O Orlov, Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992) 852

[59] J Pascaleff, Floer cohomology in the mirror of the projective plane and a binodal cubic curve, Duke Math. J. 163 (2014) 2427 | DOI

[60] M Perling, Combinatorial aspects of exceptional sequences on (rational) surfaces, Math. Z. 288 (2018) 243 | DOI

[61] A Polishchuk, E Zaslow, Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys. 2 (1998) 443 | DOI

[62] L Polterovich, The surgery of Lagrange submanifolds, Geom. Funct. Anal. 1 (1991) 198 | DOI

[63] P Seidel, More about vanishing cycles and mutation, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. (2001) 429 | DOI

[64] P Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003 | DOI

[65] P Seidel, A∞–subalgebras and natural transformations, Homology Homotopy Appl. 10 (2008) 83 | DOI

[66] P Seidel, Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI

[67] P Seidel, Symplectic homology as Hochschild homology, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 415 | DOI

[68] P Seidel, Fukaya A∞–structures associated to Lefschetz fibrations, I, J. Symplectic Geom. 10 (2012) 325 | DOI

[69] P Seidel, Fukaya A∞–structures associated to Lefschetz fibrations, II, from: "Algebra, geometry, and physics in the 21st century" (editors D Auroux, L Katzarkov, T Pantev, Y Soibelman, Y Tschinkel), Progr. Math. 324, Springer (2017) 295 | DOI

[70] P Seidel, R Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001) 37 | DOI

[71] V Shende, D Treumann, H Williams, On the combinatorics of exact Lagrangian surfaces, (2016)

[72] Z Sylvan, On partially wrapped Fukaya categories, J. Topol. 12 (2019) 372 | DOI

[73] M Symington, Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153 | DOI

[74] K Ueda, Homological mirror symmetry for toric del Pezzo surfaces, Comm. Math. Phys. 264 (2006) 71 | DOI

[75] R Vianna, Infinitely many exotic monotone Lagrangian tori in CP2, J. Topol. 9 (2016) 535 | DOI

[76] R Vianna, Infinitely many monotone Lagrangian tori in del Pezzo surfaces, Selecta Math. 23 (2017) 1955 | DOI

[77] C Voisin, Hodge theory and complex algebraic geometry, I, 76, Cambridge Univ. Press (2002) | DOI

[78] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241 | DOI