Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a log Calabi–Yau surface with maximal boundary and distinguished complex structure, we explain how to construct a mirror Lefschetz fibration , where is a Weinstein four-manifold, such that the directed Fukaya category of is isomorphic to , and the wrapped Fukaya category is isomorphic to . We construct an explicit isomorphism between and the total space of the almost-toric fibration arising in work of Gross, Hacking and Keel (Publ. Math. Inst. Hautes Études Sci. 122 (2015) 65–168); when is negative definite this is expected to be the Milnor fibre of a smoothing of the dual cusp of . We also match our mirror potential with existing constructions for a range of special cases of , notably those of Auroux, Katzarkov and Orlov (Invent. Math. 166 (2006) 537–582) and Abouzaid (Selecta Math. 15 (2009) 189–270).
Hacking, Paul 1 ; Keating, Ailsa 2
@article{GT_2022_26_8_a5, author = {Hacking, Paul and Keating, Ailsa}, title = {Homological mirror symmetry for log {Calabi{\textendash}Yau} surfaces}, journal = {Geometry & topology}, pages = {3747--3833}, publisher = {mathdoc}, volume = {26}, number = {8}, year = {2022}, url = {http://geodesic.mathdoc.fr/item/GT_2022_26_8_a5/} }
Hacking, Paul; Keating, Ailsa. Homological mirror symmetry for log Calabi–Yau surfaces. Geometry & topology, Tome 26 (2022) no. 8, pp. 3747-3833. http://geodesic.mathdoc.fr/item/GT_2022_26_8_a5/
[1] Homogeneous coordinate rings and mirror symmetry for toric varieties, Geom. Topol. 10 (2006) 1097 | DOI
,[2] Morse homology, tropical geometry, and homological mirror symmetry for toric varieties, Selecta Math. 15 (2009) 189 | DOI
,[3] Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces, Publ. Math. Inst. Hautes Études Sci. 123 (2016) 199 | DOI
, , ,[4] Lefschetz fibration techniques in wrapped Floer cohomology, in preparation
, ,[5] An introduction to Weinstein handlebodies for complements of smoothed toric divisors, from: "Research directions in symplectic and contact geometry and topology" (editors B Acu, C Cannizzo, D McDuff, Z Myer, Y Pan, L Traynor), Assoc. Women Math. Ser. 27, Springer (2021) 217 | DOI
, , , , , , ,[6] Mirror symmetry and T–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007) 51
,[7] Special Lagrangian fibrations, wall-crossing, and mirror symmetry, from: "Surveys in differential geometry, XIII : Geometry, analysis, and algebraic geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 13, International (2009) 1 | DOI
,[8] Mirror symmetry for del Pezzo surfaces : vanishing cycles and coherent sheaves, Invent. Math. 166 (2006) 537 | DOI
, , ,[9] Mirror symmetry for weighted projective planes and their noncommutative deformations, Ann. of Math. 167 (2008) 867 | DOI
, , ,[10] Coherent sheaves on Pn and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978) 68
,[11] Lagrangian cobordism, I, J. Amer. Math. Soc. 26 (2013) 295 | DOI
, ,[12] Symplectic birational transformations of the plane, Osaka J. Math. 50 (2013) 573
,[13] Helices on del Pezzo surfaces and tilting Calabi–Yau algebras, Adv. Math. 224 (2010) 1672 | DOI
, ,[14] Legendrian fronts for affine varieties, Duke Math. J. 168 (2019) 225 | DOI
, ,[15] SYZ mirror symmetry for toric varieties, from: "Handbook for mirror symmetry of Calabi–Yau Fano manifolds" (editors L Ji, B Wu, S T Yau), Adv. Lect. Math. 47, International (2020) 1
,[16] Gross fibrations, SYZ mirror symmetry, and open Gromov–Witten invariants for toric Calabi–Yau orbifolds, J. Differential Geom. 103 (2016) 207
, , , ,[17] SYZ mirror symmetry for toric Calabi–Yau manifolds, J. Differential Geom. 90 (2012) 177
, , ,[18] Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006) 773 | DOI
, ,[19] From Stein to Weinstein and back : symplectic geometry of affine complex manifolds, 59, Amer. Math. Soc. (2012) | DOI
, ,[20] The Sarkisov program for Mori fibred Calabi–Yau pairs, Algebr. Geom. 3 (2016) 370 | DOI
, ,[21] Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5 | DOI
,[22] Lagrangian isotopy of tori in S2 ×S2 and CP2, Geom. Funct. Anal. 26 (2016) 1297 | DOI
, , ,[23] Smoothings and rational double point adjacencies for cusp singularities, J. Differential Geom. 118 (2021) 23 | DOI
, ,[24] T-duality and homological mirror symmetry for toric varieties, Adv. Math. 229 (2012) 1875 | DOI
, , , ,[25] Thurston’s work on surfaces, 48, Princeton Univ. Press (2012)
, , ,[26] On the geometry of anticanonical pairs, (2015)
,[27] Introduction to toric varieties, 131, Princeton Univ. Press (1993) | DOI
,[28] Exact Lefschetz fibrations associated with dimer models, Math. Res. Lett. 17 (2010) 1029 | DOI
, ,[29] Sectorial descent for wrapped Fukaya categories, (2019)
, , ,[30] Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Higher Ed. Press (2002) 405
,[31] Existence of Lefschetz fibrations on Stein and Weinstein domains, Geom. Topol. 21 (2017) 963 | DOI
, ,[32] Homological geometry and mirror symmetry, from: "Proceedings of the International Congress of Mathematicians" (editor S D Chatterji), Birkhäuser (1995) 472
,[33] Helix theory, Mosc. Math. J. 4 (2004) 377 | DOI
, ,[34] Special Lagrangian fibrations, I : Topology, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Sci. (1998) 156
,[35] Special Lagrangian fibrations, II : Geometry—A survey of techniques in the study of special Lagrangian fibrations, from: "Surveys in differential geometry: differential geometry inspired by string theory" (editor S T Yau), Surv. Differ. Geom. 5, International (1999) 341 | DOI
,[36] Birational geometry of cluster algebras, Algebr. Geom. 2 (2015) 137 | DOI
, , ,[37] Mirror symmetry for log Calabi–Yau surfaces, I, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 65 | DOI
, , ,[38] Moduli of surfaces with an anti-canonical cycle, Compos. Math. 151 (2015) 265 | DOI
, , ,[39] Mirror symmetry via logarithmic degeneration data, I, J. Differential Geom. 72 (2006) 169
, ,[40] Mirror symmetry via logarithmic degeneration data, II, J. Algebraic Geom. 19 (2010) 679 | DOI
, ,[41] From real affine geometry to complex geometry, Ann. of Math. 174 (2011) 1301 | DOI
, ,[42] Monodromy of monomially admissible Fukaya–Seidel categories mirror to toric varieties, Adv. Math. 350 (2019) 662 | DOI
,[43] Mirror symmetry and quantum geometry, from: "Proceedings of the International Congress of Mathematicians" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Higher Ed. Press (2002) 431
,[44] Mirror symmetry, (2000)
, ,[45] Fourier–Mukai transforms in algebraic geometry, Clarendon (2006) | DOI
,[46] Homological mirror symmetry for hypersurface cusp singularities, Selecta Math. 24 (2018) 1411 | DOI
,[47] On symplectic stabilisations and mapping classes, Bull. Lond. Math. Soc. 54 (2022) 718 | DOI
,[48] Lecture notes on stabilization of contact open books, Münster J. Math. 10 (2017) 425 | DOI
,[49] Rational and nearly rational varieties, 92, Cambridge Univ. Press (2004) | DOI
, , ,[50]
, lecture notes taken by J Bellaiche, J-F Dat, I Marin, G Racinet and H Randriambololona (1998)[51] Exceptional sheaves on Del Pezzo surfaces, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994) 53
, ,[52] Arithmetic mirror symmetry for the 2–torus, (2012)
, ,[53] Arithmetic mirror symmetry for genus 1 curves with n marked points, Selecta Math. 23 (2017) 1851 | DOI
, ,[54] Rational surfaces with an anticanonical cycle, Ann. of Math. 114 (1981) 267 | DOI
,[55] Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010) 853 | DOI
, ,[56] Lectures on the h–cobordism theorem, Princeton Univ. Press (1965)
,[57] Symplectic fillings of the link of simple elliptic singularities, J. Reine Angew. Math. 565 (2003) 183 | DOI
, ,[58] Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992) 852
,[59] Floer cohomology in the mirror of the projective plane and a binodal cubic curve, Duke Math. J. 163 (2014) 2427 | DOI
,[60] Combinatorial aspects of exceptional sequences on (rational) surfaces, Math. Z. 288 (2018) 243 | DOI
,[61] Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys. 2 (1998) 443 | DOI
, ,[62] The surgery of Lagrange submanifolds, Geom. Funct. Anal. 1 (1991) 198 | DOI
,[63] More about vanishing cycles and mutation, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. (2001) 429 | DOI
,[64] A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003 | DOI
,[65] A∞–subalgebras and natural transformations, Homology Homotopy Appl. 10 (2008) 83 | DOI
,[66] Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI
,[67] Symplectic homology as Hochschild homology, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 415 | DOI
,[68] Fukaya A∞–structures associated to Lefschetz fibrations, I, J. Symplectic Geom. 10 (2012) 325 | DOI
,[69] Fukaya A∞–structures associated to Lefschetz fibrations, II, from: "Algebra, geometry, and physics in the 21st century" (editors D Auroux, L Katzarkov, T Pantev, Y Soibelman, Y Tschinkel), Progr. Math. 324, Springer (2017) 295 | DOI
,[70] Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001) 37 | DOI
, ,[71] On the combinatorics of exact Lagrangian surfaces, (2016)
, , ,[72] On partially wrapped Fukaya categories, J. Topol. 12 (2019) 372 | DOI
,[73] Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153 | DOI
,[74] Homological mirror symmetry for toric del Pezzo surfaces, Comm. Math. Phys. 264 (2006) 71 | DOI
,[75] Infinitely many exotic monotone Lagrangian tori in CP2, J. Topol. 9 (2016) 535 | DOI
,[76] Infinitely many monotone Lagrangian tori in del Pezzo surfaces, Selecta Math. 23 (2017) 1955 | DOI
,[77] Hodge theory and complex algebraic geometry, I, 76, Cambridge Univ. Press (2002) | DOI
,[78] Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241 | DOI
,