Compactifications of moduli of elliptic K3 surfaces: Stable pair and toroidal
Geometry & topology, Tome 26 (2022) no. 8, pp. 3525-3588.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We describe two geometrically meaningful compactifications of the moduli space of elliptic K3 surfaces via stable slc pairs, for two different choices of a polarizing divisor, and show that their normalizations are two different toroidal compactifications of the moduli space, one for the ramification divisor and another for the rational curve divisor.

In the course of the proof, we further develop the theory of integral–affine spheres with 24 singularities. We also construct moduli of rational (generalized) elliptic stable slc surfaces of types An, Cn and En.

Keywords: K3 surfaces, elliptic surfaces, moduli, KSBA compactification, stable pairs

Alexeev, Valery 1 ; Brunyate, Adrian 2 ; Engel, Philip 1

1 Department of Mathematics, University of Georgia, Athens, GA, United States
2 Baltimore, MD, United States
@article{GT_2022_26_8_a3,
     author = {Alexeev, Valery and Brunyate, Adrian and Engel, Philip},
     title = {Compactifications of moduli of elliptic {K3} surfaces: {Stable} pair and toroidal},
     journal = {Geometry & topology},
     pages = {3525--3588},
     publisher = {mathdoc},
     volume = {26},
     number = {8},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/GT_2022_26_8_a3/}
}
TY  - JOUR
AU  - Alexeev, Valery
AU  - Brunyate, Adrian
AU  - Engel, Philip
TI  - Compactifications of moduli of elliptic K3 surfaces: Stable pair and toroidal
JO  - Geometry & topology
PY  - 2022
SP  - 3525
EP  - 3588
VL  - 26
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2022_26_8_a3/
ID  - GT_2022_26_8_a3
ER  - 
%0 Journal Article
%A Alexeev, Valery
%A Brunyate, Adrian
%A Engel, Philip
%T Compactifications of moduli of elliptic K3 surfaces: Stable pair and toroidal
%J Geometry & topology
%D 2022
%P 3525-3588
%V 26
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2022_26_8_a3/
%F GT_2022_26_8_a3
Alexeev, Valery; Brunyate, Adrian; Engel, Philip. Compactifications of moduli of elliptic K3 surfaces: Stable pair and toroidal. Geometry & topology, Tome 26 (2022) no. 8, pp. 3525-3588. http://geodesic.mathdoc.fr/item/GT_2022_26_8_a3/

[1] V Alexeev, Boundedness and K2 for log surfaces, Internat. J. Math. 5 (1994) 779 | DOI

[2] V Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. 155 (2002) 611 | DOI

[3] V Alexeev, P Engel, Compact moduli of K3 surfaces, (2021)

[4] V Alexeev, P Engel, A Thompson, Stable pair compactification of moduli of K3 surfaces of degree 2, (2019)

[5] V Alexeev, I Nakamura, On Mumford’s construction of degenerating abelian varieties, Tohoku Math. J. 51 (1999) 399 | DOI

[6] V Alexeev, A Thompson, ADE surfaces and their moduli, J. Algebraic Geom. 30 (2021) 331 | DOI

[7] K Ascher, D Bejleri, Log canonical models of elliptic surfaces, Adv. Math. 320 (2017) 210 | DOI

[8] K Ascher, D Bejleri, Compact moduli of elliptic K3 surfaces, (2019)

[9] K Ascher, D Bejleri, Moduli of fibered surface pairs from twisted stable maps, Math. Ann. 374 (2019) 1007 | DOI

[10] K Ascher, D Bejleri, Moduli of weighted stable elliptic surfaces and invariance of log plurigenera, Proc. Lond. Math. Soc. 122 (2021) 617 | DOI

[11] A Ash, D Mumford, M Rapoport, Y Tai, Smooth compactification of locally symmetric varieties, IV, Math. Sci. Press (1975)

[12] W L Baily Jr., A Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84 (1966) 442 | DOI

[13] V Batyrev, M Blume, On generalisations of Losev–Manin moduli spaces for classical root systems, Pure Appl. Math. Q. 7 (2011) 1053 | DOI

[14] N Bourbaki, Lie groups and Lie algebras, Chapters 4–6, Springer (2002)

[15] N Bourbaki, Lie groups and Lie algebras, Chapters 7–9, Springer (2005)

[16] A Brunyate, A modular compactification of the space of elliptic K3 surfaces, PhD thesis, University of Georgia (2015)

[17] J Bryan, N C Leung, The enumerative geometry of K3 surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371 | DOI

[18] C Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955) 778 | DOI

[19] A Clingher, C F Doran, On K3 surfaces with large complex structure, Adv. Math. 215 (2007) 504 | DOI

[20] P Engel, Looijenga’s conjecture via integral–affine geometry, J. Differential Geom. 109 (2018) 467 | DOI

[21] P Engel, R Friedman, Smoothings and rational double point adjacencies for cusp singularities, J. Differential Geom. 118 (2021) 23 | DOI

[22] R Friedman, Global smoothings of varieties with normal crossings, Ann. of Math. 118 (1983) 75 | DOI

[23] R Friedman, On the geometry of anticanonical pairs, (2015)

[24] R Friedman, R Miranda, Smoothing cusp singularities of small length, Math. Ann. 263 (1983) 185 | DOI

[25] R Friedman, F Scattone, Type III degenerations of K3 surfaces, Invent. Math. 83 (1986) 1 | DOI

[26] O Fujino, Semipositivity theorems for moduli problems, Ann. of Math. 187 (2018) 639 | DOI

[27] M Gross, P Hacking, S Keel, Mirror symmetry for log Calabi–Yau surfaces, I, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 65 | DOI

[28] M Gross, P Hacking, S Keel, Moduli of surfaces with an anti-canonical cycle, Compos. Math. 151 (2015) 265 | DOI

[29] M Gross, P Hacking, S Keel, B Siebert, Theta functions for K3 surfaces, in preparation

[30] M Gross, B Siebert, Affine manifolds, log structures, and mirror symmetry, Turkish J. Math. 27 (2003) 33

[31] A Grothendieck, Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, III, Inst. Hautes Études Sci. Publ. Math. 28 (1966) 5

[32] C D Hacon, J Mckernan, C Xu, Boundedness of moduli of varieties of general type, J. Eur. Math. Soc. 20 (2018) 865 | DOI

[33] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[34] G Inchiostro, Moduli of Weierstrass fibrations with marked section, Adv. Math. 375 (2020) | DOI

[35] K Karu, Minimal models and boundedness of stable varieties, J. Algebraic Geom. 9 (2000) 93

[36] M Kawakita, Inversion of adjunction on log canonicity, Invent. Math. 167 (2007) 129 | DOI

[37] S Keel, S Mori, Quotients by groupoids, Ann. of Math. 145 (1997) 193 | DOI

[38] J Kollár, Toward moduli of singular varieties, Compositio Math. 56 (1985) 369

[39] J Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990) 235

[40] J Kollár, Hulls and husks, (2008)

[41] J Kollár, Singularities of the minimal model program, 200, Cambridge Univ. Press (2013) | DOI

[42] J Kollár, N I Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988) 299 | DOI

[43] M Kontsevich, Y Soibelman, Affine structures and non-Archimedean analytic spaces, from: "The unity of mathematics" (editors P Etingof, V Retakh, I M Singer), Progr. Math. 244, Birkhäuser (2006) 321 | DOI

[44] S J Kovács, Z Patakfalvi, Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension, J. Amer. Math. Soc. 30 (2017) 959 | DOI

[45] V S Kulikov, Degenerations of K3 surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977) 1008

[46] R Laza, Triangulations of the sphere and degenerations of K3 surfaces, (2008)

[47] R Laza, The KSBA compactification for the moduli space of degree two K3 pairs, J. Eur. Math. Soc. 18 (2016) 225 | DOI

[48] E Looijenga, Root systems and elliptic curves, Invent. Math. 38 (1976/77) 17 | DOI

[49] A Losev, Y Manin, New moduli spaces of pointed curves and pencils of flat connections, Michigan Math. J. 48 (2000) 443 | DOI

[50] R Miranda, The basic theory of elliptic surfaces, ETS Editrice (1989)

[51] D Mumford, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. 24 (1972) 239

[52] Y Namikawa, A new compactification of the Siegel space and degeneration of Abelian varieties, I, Math. Ann. 221 (1976) 97 | DOI

[53] Y Odaka, PL density invariant for type II degenerating K3 surfaces, moduli compactification and hyper-Kähler metric, Nagoya Math. J. 247 (2022) 574 | DOI

[54] U Persson, H Pinkham, Degeneration of surfaces with trivial canonical bundle, Ann. of Math. 113 (1981) 45 | DOI

[55] I I Pjateckiĭ-Šapiro, I R Šafarevič, Torelli’s theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 530

[56] W Schmid, Variation of Hodge structure : the singularities of the period mapping, Invent. Math. 22 (1973) 211 | DOI

[57] G C Shephard, J A Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954) 274 | DOI

[58] N I Shepherd-Barron, Extending polarizations on families of K3 surfaces, from: "The birational geometry of degenerations" (editors R Friedman, D R Morrison), Progr. Math. 29, Birkhäuser (1983) 135

[59] R Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965) 49 | DOI

[60] M Symington, Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153 | DOI

[61] E Viehweg, Quasi-projective moduli for polarized manifolds, 30, Springer (1995) | DOI

[62] È B Vinberg, Some arithmetical discrete groups in Lobačevskiĭ spaces, from: "Discrete subgroups of Lie groups and applications to moduli", Oxford Univ. Press (1975) 323