Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Our earlier work (Geom. Topol. 24 (2020) 1791–1839) gives an extension of Taubes’ “” theorem to nonsymplectic –manifolds. The main result of this sequel asserts the following: whenever the Seiberg–Witten invariants are defined over a closed minimal –manifold , they are equivalent modulo 2 to “near-symplectic” Gromov invariants in the presence of certain self-dual harmonic –forms on . A version for nonminimal –manifolds is also proved. A corollary to Morse theory on –manifolds is also announced, recovering a result of Hutchings, Lee, and Turaev about the –dimensional Seiberg–Witten invariants.
Gerig, Chris 1
@article{GT_2022_26_8_a0, author = {Gerig, Chris}, title = {Seiberg{\textendash}Witten and {Gromov} invariants for self-dual harmonic 2{\textendash}forms}, journal = {Geometry & topology}, pages = {3307--3365}, publisher = {mathdoc}, volume = {26}, number = {8}, year = {2022}, url = {http://geodesic.mathdoc.fr/item/GT_2022_26_8_a0/} }
Gerig, Chris. Seiberg–Witten and Gromov invariants for self-dual harmonic 2–forms. Geometry & topology, Tome 26 (2022) no. 8, pp. 3307-3365. http://geodesic.mathdoc.fr/item/GT_2022_26_8_a0/
[1] An intrinsic characterization of harmonic one-forms, from: "Global analysis" (editors D C Spencer, S Iyanaga), Princeton Math. Ser. 29, Princeton Univ. Press (1969) 101 | DOI
,[2] The absolute gradings on embedded contact homology and Seiberg–Witten Floer cohomology, Algebr. Geom. Topol. 13 (2013) 2239 | DOI
,[3] Circle-valued Morse theory and Seiberg–Witten invariants of 3–manifolds, in preparation
,[4] Taming the pseudoholomorphic beasts in R × (S1 × S2), Geom. Topol. 24 (2020) 1791 | DOI
,[5] Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619 | DOI
,[6] A note on Morse theory of harmonic 1–forms, Topology 38 (1999) 223 | DOI
,[7] Transversality theorems for harmonic forms, Rocky Mountain J. Math. 34 (2004) 629 | DOI
,[8] Embedded contact homology as a (symplectic) field theory, in preparation
,[9] Reidemeister torsion in generalized Morse theory, Forum Math. 14 (2002) 209 | DOI
,[10] The embedded contact homology index revisited, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263 | DOI
,[11] Circle-valued Morse theory and Reidemeister torsion, Geom. Topol. 3 (1999) 369 | DOI
, ,[12] Circle-valued Morse theory, Reidemeister torsion, and Seiberg–Witten invariants of 3–manifolds, Topology 38 (1999) 861 | DOI
, ,[13] Proof of the Arnold chord conjecture in three dimensions, II, Geom. Topol. 17 (2013) 2601 | DOI
, ,[14] Vortices and monopoles: structure of static gauge theories, 2, Birkhäuser (1980)
, ,[15] Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI
, ,[16] Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 | DOI
, , , ,[17] HF = HM, V : Seiberg–Witten Floer homology and handle additions, Geom. Topol. 24 (2020) 3471 | DOI
, , ,[18] Yamabe constants and the perturbed Seiberg–Witten equations, Comm. Anal. Geom. 5 (1997) 535 | DOI
,[19] The equivalence between SW and Gr in the case where b+ = 1, Int. Math. Res. Not. 1999 (1999) 335 | DOI
, ,[20] A normal form for the birth/flight of closed selfdual 2–form degeneracies, unpublished (1996)
, ,[21] Topological solitons, Cambridge Univ. Press (2004) | DOI
, ,[22] 3–dimensional Seiberg–Witten invariants and non-Kählerian geometry, Math. Ann. 312 (1998) 261 | DOI
, ,[23] The symplectic Thom conjecture, Ann. of Math. 151 (2000) 93 | DOI
, ,[24] Seiberg–Witten invariants of mapping tori, symplectic fixed points, and Lefschetz numbers, Turkish J. Math. 23 (1999) 117
,[25] Arbitrary N–vortex solutions to the first order Ginzburg–Landau equations, Comm. Math. Phys. 72 (1980) 277 | DOI
,[26] Counting pseudo-holomorphic submanifolds in dimension 4, J. Differential Geom. 44 (1996) 818
,[27] SW ⇒ Gr : from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845 | DOI
,[28] Gr ⇒ SW : from pseudo-holomorphic curves to Seiberg–Witten solutions, J. Differential Geom. 51 (1999) 203
,[29] Gr = SW : counting curves and connections, J. Differential Geom. 52 (1999) 453
,[30] Seiberg–Witten and Gromov invariants for symplectic 4–manifolds, 2, International (2000)
,[31] Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 | DOI
,[32] Embedded contact homology and Seiberg–Witten Floer cohomology, II, Geom. Topol. 14 (2010) 2583 | DOI
,[33] Embedded contact homology and Seiberg–Witten Floer cohomology, III, Geom. Topol. 14 (2010) 2721 | DOI
,[34] Embedded contact homology and Seiberg–Witten Floer cohomology, IV, Geom. Topol. 14 (2010) 2819 | DOI
,[35] Embedded contact homology and Seiberg–Witten Floer cohomology, V, Geom. Topol. 14 (2010) 2961 | DOI
,[36] Torsion invariants of Spinc–structures on 3–manifolds, Math. Res. Lett. 4 (1997) 679 | DOI
,[37] A combinatorial formulation for the Seiberg–Witten invariants of 3–manifolds, Math. Res. Lett. 5 (1998) 583 | DOI
,[38] Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv. 85 (2010) 347 | DOI
,