Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that if a compact Kähler Poisson manifold has a compact symplectic leaf with finite fundamental group, then, after passing to a finite étale cover, it decomposes as the product of the universal cover of the leaf and some other Poisson manifold. As a step in the proof, we establish a special case of Beauville’s conjecture on the structure of compact Kähler manifolds with split tangent bundle.
Druel, Stéphane 1 ; Pereira, Jorge Vitório 2 ; Pym, Brent 3 ; Touzet, Frédéric 4
@article{GT_2022_26_6_a8, author = {Druel, St\'ephane and Pereira, Jorge Vit\'orio and Pym, Brent and Touzet, Fr\'ed\'eric}, title = {A global {Weinstein} splitting theorem for holomorphic {Poisson} manifolds}, journal = {Geometry & topology}, pages = {2831--2853}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {2022}, url = {http://geodesic.mathdoc.fr/item/GT_2022_26_6_a8/} }
TY - JOUR AU - Druel, Stéphane AU - Pereira, Jorge Vitório AU - Pym, Brent AU - Touzet, Frédéric TI - A global Weinstein splitting theorem for holomorphic Poisson manifolds JO - Geometry & topology PY - 2022 SP - 2831 EP - 2853 VL - 26 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/GT_2022_26_6_a8/ ID - GT_2022_26_6_a8 ER -
%0 Journal Article %A Druel, Stéphane %A Pereira, Jorge Vitório %A Pym, Brent %A Touzet, Frédéric %T A global Weinstein splitting theorem for holomorphic Poisson manifolds %J Geometry & topology %D 2022 %P 2831-2853 %V 26 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/GT_2022_26_6_a8/ %F GT_2022_26_6_a8
Druel, Stéphane; Pereira, Jorge Vitório; Pym, Brent; Touzet, Frédéric. A global Weinstein splitting theorem for holomorphic Poisson manifolds. Geometry & topology, Tome 26 (2022) no. 6, pp. 2831-2853. http://geodesic.mathdoc.fr/item/GT_2022_26_6_a8/
[1] Some remarks on Kähler manifolds with c1 = 0, from: "Classification of algebraic and analytic manifolds" (editor K Ueno), Progr. Math. 39, Birkhäuser (1983) 1 | DOI
,[2] Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755
,[3] Complex manifolds with split tangent bundle, from: "Complex analysis and algebraic geometry" (editors T Peternell, F O Schreyer), de Gruyter (2000) 61 | DOI
,[4] The decomposition of Kähler manifolds with a trivial canonical class, Mat. Sb. 93(135) (1974) 573
,[5] On foliations with semi-positive anti-canonical bundle, Bull. Braz. Math. Soc. 50 (2019) 315 | DOI
,[6] Les connexions infinitésimales dans un espace fibré différentiable, from: "Colloque de topologie (espaces fibrés)", Georges Thone (1951) 29
,[7] Variétés kähleriennes et première classe de Chern, J. Differential Geometry 1 (1967) 195
,[8] Compactness of the Chow scheme : applications to automorphisms and deformations of Kähler manifolds, from: "Fonctions de plusieurs variables complexes, III" (editor F Norguet), Lecture Notes in Math. 670, Springer (1978) 140 | DOI
,[9] Singular foliations with trivial canonical class, Invent. Math. 213 (2018) 1327 | DOI
, , ,[10] Introduction to symplectic topology, Clarendon (1998)
, ,[11] Introduction to foliations and Lie groupoids, 91, Cambridge Univ. Press (2003) | DOI
, ,[12] Global stability for holomorphic foliations on Kaehler manifolds, Qual. Theory Dyn. Syst. 2 (2001) 381 | DOI
,[13] Poisson geometry with a 3–form background, Progr. Theoret. Phys. Suppl. 144 (2001) 145 | DOI
, ,[14] The local structure of Poisson manifolds, J. Differential Geom. 18 (1983) 523
,[15] The graph of a foliation, Ann. Global Anal. Geom. 1 (1983) 51 | DOI
,