A global Weinstein splitting theorem for holomorphic Poisson manifolds
Geometry & topology, Tome 26 (2022) no. 6, pp. 2831-2853.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that if a compact Kähler Poisson manifold has a compact symplectic leaf with finite fundamental group, then, after passing to a finite étale cover, it decomposes as the product of the universal cover of the leaf and some other Poisson manifold. As a step in the proof, we establish a special case of Beauville’s conjecture on the structure of compact Kähler manifolds with split tangent bundle.

Keywords: complex Poisson manifolds, complex foliations

Druel, Stéphane 1 ; Pereira, Jorge Vitório 2 ; Pym, Brent 3 ; Touzet, Frédéric 4

1 Institut Camille Jordan, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
2 Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil
3 Department of Mathematics and Statistics, McGill University, Montreal QC, Canada
4 Institut de recherche mathématique de Rennes, Université Rennes 1, Rennes, France
@article{GT_2022_26_6_a8,
     author = {Druel, St\'ephane and Pereira, Jorge Vit\'orio and Pym, Brent and Touzet, Fr\'ed\'eric},
     title = {A global {Weinstein} splitting theorem for holomorphic {Poisson} manifolds},
     journal = {Geometry & topology},
     pages = {2831--2853},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/GT_2022_26_6_a8/}
}
TY  - JOUR
AU  - Druel, Stéphane
AU  - Pereira, Jorge Vitório
AU  - Pym, Brent
AU  - Touzet, Frédéric
TI  - A global Weinstein splitting theorem for holomorphic Poisson manifolds
JO  - Geometry & topology
PY  - 2022
SP  - 2831
EP  - 2853
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2022_26_6_a8/
ID  - GT_2022_26_6_a8
ER  - 
%0 Journal Article
%A Druel, Stéphane
%A Pereira, Jorge Vitório
%A Pym, Brent
%A Touzet, Frédéric
%T A global Weinstein splitting theorem for holomorphic Poisson manifolds
%J Geometry & topology
%D 2022
%P 2831-2853
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2022_26_6_a8/
%F GT_2022_26_6_a8
Druel, Stéphane; Pereira, Jorge Vitório; Pym, Brent; Touzet, Frédéric. A global Weinstein splitting theorem for holomorphic Poisson manifolds. Geometry & topology, Tome 26 (2022) no. 6, pp. 2831-2853. http://geodesic.mathdoc.fr/item/GT_2022_26_6_a8/

[1] A Beauville, Some remarks on Kähler manifolds with c1 = 0, from: "Classification of algebraic and analytic manifolds" (editor K Ueno), Progr. Math. 39, Birkhäuser (1983) 1 | DOI

[2] A Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755

[3] A Beauville, Complex manifolds with split tangent bundle, from: "Complex analysis and algebraic geometry" (editors T Peternell, F O Schreyer), de Gruyter (2000) 61 | DOI

[4] F A Bogomolov, The decomposition of Kähler manifolds with a trivial canonical class, Mat. Sb. 93(135) (1974) 573

[5] S Druel, On foliations with semi-positive anti-canonical bundle, Bull. Braz. Math. Soc. 50 (2019) 315 | DOI

[6] C Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, from: "Colloque de topologie (espaces fibrés)", Georges Thone (1951) 29

[7] A Lichnerowicz, Variétés kähleriennes et première classe de Chern, J. Differential Geometry 1 (1967) 195

[8] D I Lieberman, Compactness of the Chow scheme : applications to automorphisms and deformations of Kähler manifolds, from: "Fonctions de plusieurs variables complexes, III" (editor F Norguet), Lecture Notes in Math. 670, Springer (1978) 140 | DOI

[9] F Loray, J V Pereira, F Touzet, Singular foliations with trivial canonical class, Invent. Math. 213 (2018) 1327 | DOI

[10] D Mcduff, D Salamon, Introduction to symplectic topology, Clarendon (1998)

[11] I Moerdijk, J Mrčun, Introduction to foliations and Lie groupoids, 91, Cambridge Univ. Press (2003) | DOI

[12] J V Pereira, Global stability for holomorphic foliations on Kaehler manifolds, Qual. Theory Dyn. Syst. 2 (2001) 381 | DOI

[13] P Ševera, A Weinstein, Poisson geometry with a 3–form background, Progr. Theoret. Phys. Suppl. 144 (2001) 145 | DOI

[14] A Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983) 523

[15] H E Winkelnkemper, The graph of a foliation, Ann. Global Anal. Geom. 1 (1983) 51 | DOI