Equations of linear subvarieties of strata of differentials
Geometry & topology, Tome 26 (2022) no. 6, pp. 2773-2830.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We investigate the closure M¯ of a linear subvariety M of a stratum of meromorphic differentials in the multiscale compactification constructed by Bainbridge, Chen, Gendron, Grushevsky and Möller. Given the existence of a boundary point of M of a given combinatorial type, we deduce that certain periods of the differential are pairwise proportional on M, and deduce further explicit linear defining relations. These restrictions on linear defining equations of M allow us to rewrite them as explicit analytic equations in plumbing coordinates near the boundary, which turn out to be binomial. This in particular shows that locally near the boundary M¯ is a toric variety, and allows us to prove existence of certain smoothings of boundary points and to construct a smooth compactification of the Hurwitz space of covers of 1. As applications of our techniques, we give a fundamentally new proof of a generalization of the cylinder deformation theorem of Wright to the case of real linear subvarieties of meromorphic strata.

Keywords: Teichmüller dynamics, moduli of curves, flat surfaces

Benirschke, Frederik 1 ; Dozier, Benjamin 1 ; Grushevsky, Samuel 1

1 Department of Mathematics, Stony Brook University, Stony Brook, NY, United States
@article{GT_2022_26_6_a7,
     author = {Benirschke, Frederik and Dozier, Benjamin and Grushevsky, Samuel},
     title = {Equations of linear subvarieties of strata of differentials},
     journal = {Geometry & topology},
     pages = {2773--2830},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/GT_2022_26_6_a7/}
}
TY  - JOUR
AU  - Benirschke, Frederik
AU  - Dozier, Benjamin
AU  - Grushevsky, Samuel
TI  - Equations of linear subvarieties of strata of differentials
JO  - Geometry & topology
PY  - 2022
SP  - 2773
EP  - 2830
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2022_26_6_a7/
ID  - GT_2022_26_6_a7
ER  - 
%0 Journal Article
%A Benirschke, Frederik
%A Dozier, Benjamin
%A Grushevsky, Samuel
%T Equations of linear subvarieties of strata of differentials
%J Geometry & topology
%D 2022
%P 2773-2830
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2022_26_6_a7/
%F GT_2022_26_6_a7
Benirschke, Frederik; Dozier, Benjamin; Grushevsky, Samuel. Equations of linear subvarieties of strata of differentials. Geometry & topology, Tome 26 (2022) no. 6, pp. 2773-2830. http://geodesic.mathdoc.fr/item/GT_2022_26_6_a7/

[1] A Avila, A Eskin, M Möller, Symplectic and isometric SL(2, R)–invariant subbundles of the Hodge bundle, J. Reine Angew. Math. 732 (2017) 1 | DOI

[2] M Bainbridge, D Chen, Q Gendron, S Grushevsky, M Möller, Compactification of strata of abelian differentials, Duke Math. J. 167 (2018) 2347 | DOI

[3] M Bainbridge, D Chen, Q Gendron, S Grushevsky, M Möller, The moduli space of multi-scale differentials, preprint (2019)

[4] F Benirschke, The boundary of linear subvarieties, (2020)

[5] F Benirschke, The closure of double ramification loci via strata of exact differentials, preprint (2020)

[6] K Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17 (2004) 871 | DOI

[7] D Chen, Affine geometry of strata of differentials, J. Inst. Math. Jussieu 18 (2019) 1331 | DOI

[8] D Chen, A Wright, The WYSIWYG compactification, J. Lond. Math. Soc. 103 (2021) 490 | DOI

[9] M Costantini, M Möller, J Zachhuber, The Chern classes and the Euler characteristic of the moduli spaces of abelian differentials, preprint (2020)

[10] B Dozier, Measure bound for translation surfaces with short saddle connections, preprint (2020)

[11] A Eskin, M Mirzakhani, Invariant and stationary measures for the SL(2, R) action on moduli space, Publ. Math. Inst. Hautes Études Sci. 127 (2018) 95 | DOI

[12] A Eskin, M Mirzakhani, A Mohammadi, Isolation, equidistribution, and orbit closures for the SL(2, R) action on moduli space, Ann. of Math. 182 (2015) 673 | DOI

[13] S Filip, Splitting mixed Hodge structures over affine invariant manifolds, Ann. of Math. 183 (2016) 681 | DOI

[14] C T Mcmullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003) 857 | DOI

[15] Y Minsky, B Weiss, Nondivergence of horocyclic flows on moduli space, J. Reine Angew. Math. 552 (2002) 131 | DOI

[16] M Mirzakhani, A Wright, The boundary of an affine invariant submanifold, Invent. Math. 209 (2017) 927 | DOI

[17] D Mumford, The red book of varieties and schemes, 1358, Springer (1999) | DOI

[18] J Smillie, B Weiss, Minimal sets for flows on moduli space, Israel J. Math. 142 (2004) 249 | DOI

[19] B Sturmfels, Gröbner bases and convex polytopes, 8, Amer. Math. Soc. (1996) | DOI

[20] B Sturmfels, Equations defining toric varieties, from: "Algebraic geometry, II" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 437 | DOI

[21] A Wright, Cylinder deformations in orbit closures of translation surfaces, Geom. Topol. 19 (2015) 413 | DOI