Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that the integral cohomology modulo torsion of a rationally connected threefold comes from the integral cohomology of a smooth curve via the cylinder homomorphism associated to a family of –cycles. Equivalently, it is of strong coniveau . More generally, for a rationally connected manifold of dimension , we show that the strong coniveau and coniveau coincide for cohomology modulo torsion.
Voisin, Claire 1
@article{GT_2022_26_6_a6, author = {Voisin, Claire}, title = {On the coniveau of rationally connected threefolds}, journal = {Geometry & topology}, pages = {2731--2772}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {2022}, url = {http://geodesic.mathdoc.fr/item/GT_2022_26_6_a6/} }
Voisin, Claire. On the coniveau of rationally connected threefolds. Geometry & topology, Tome 26 (2022) no. 6, pp. 2731-2772. http://geodesic.mathdoc.fr/item/GT_2022_26_6_a6/
[1] On descending cohomology geometrically, Compos. Math. 153 (2017) 1446 | DOI
, , ,[2] Two coniveau filtrations, Duke Math. J. 170 (2021) 2719 | DOI
, ,[3] Lectures on algebraic cycles, 4, Duke University (1980)
,[4] Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983) 1235 | DOI
, ,[5] The intermediate Jacobian of the cubic threefold, Ann. of Math. 95 (1972) 281 | DOI
, ,[6] Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J. 161 (2012) 735 | DOI
, ,[7] Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5 | DOI
,[8] Smoothing algebraic space curves, from: "Algebraic geometry" (editors E Casas-Alvero, G E Welters, S Xambó-Descamps), Lecture Notes in Math. 1124, Springer (1985) 98 | DOI
, ,[9] Rationally connected varieties, J. Algebraic Geom. 1 (1992) 429
, , ,[10] The Abel–Jacobi mapping for the quartic threefold, Invent. Math. 75 (1984) 477 | DOI
,[11] Applications of algebraic K–theory to the theory of algebraic cycles, from: "Algebraic geometry" (editors E Casas-Alvero, G E Welters, S Xambó-Descamps), Lecture Notes in Math. 1124, Springer (1985) 216 | DOI
,[12] Rationality, universal generation and the integral Hodge conjecture, Geom. Topol. 23 (2019) 2861 | DOI
,[13] On the cylinder homomorphisms of Fano complete intersections, J. Math. Soc. Japan 42 (1990) 719 | DOI
,[14] A remark on a 3–fold constructed by Colliot-Thélène and Voisin, Math. Res. Lett. 27 (2020) 301
,[15] Niveau and coniveau filtrations on cohomology groups and Chow groups, Proc. Lond. Math. Soc. 106 (2013) 410 | DOI
,[16] Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2003) | DOI
,[17] Remarks on curve classes on rationally connected varieties, from: "A celebration of algebraic geometry" (editors B Hassett, J McKernan, J Starr, R Vakil), Clay Math. Proc. 18, Amer. Math. Soc. (2013) 591
,[18] Unirational threefolds with no universal codimension 2 cycle, Invent. Math. 201 (2015) 207 | DOI
,[19] On the universal CH0 group of cubic hypersurfaces, J. Eur. Math. Soc. 19 (2017) 1619 | DOI
,[20] Birational invariants and decomposition of the diagonal, from: "Birational geometry of hypersurfaces" (editors A Hochenegger, M Lehn, P Stellari), Lecture Notes Un. Mat. Ital. 26, Springer (2019) 3 | DOI
,[21] The morphic Abel–Jacobi map, Compos. Math. 143 (2007) 909 | DOI
,[22] Abel–Jacobi isogenies for certain types of Fano threefolds, 141, Math. Centrum (1981)
,