On the coniveau of rationally connected threefolds
Geometry & topology, Tome 26 (2022) no. 6, pp. 2731-2772.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that the integral cohomology modulo torsion of a rationally connected threefold comes from the integral cohomology of a smooth curve via the cylinder homomorphism associated to a family of 1–cycles. Equivalently, it is of strong coniveau 1. More generally, for a rationally connected manifold X of dimension n, we show that the strong coniveau Ñn2H2n3(X, ) and coniveau Nn2H2n3(X, ) coincide for cohomology modulo torsion.

Keywords: Cohomology, coniveau, birational invariants, rationally connected manifolds

Voisin, Claire 1

1 Institut de mathématiques de Jussieu, CNRS, Paris, France
@article{GT_2022_26_6_a6,
     author = {Voisin, Claire},
     title = {On the coniveau of rationally connected threefolds},
     journal = {Geometry & topology},
     pages = {2731--2772},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/GT_2022_26_6_a6/}
}
TY  - JOUR
AU  - Voisin, Claire
TI  - On the coniveau of rationally connected threefolds
JO  - Geometry & topology
PY  - 2022
SP  - 2731
EP  - 2772
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2022_26_6_a6/
ID  - GT_2022_26_6_a6
ER  - 
%0 Journal Article
%A Voisin, Claire
%T On the coniveau of rationally connected threefolds
%J Geometry & topology
%D 2022
%P 2731-2772
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2022_26_6_a6/
%F GT_2022_26_6_a6
Voisin, Claire. On the coniveau of rationally connected threefolds. Geometry & topology, Tome 26 (2022) no. 6, pp. 2731-2772. http://geodesic.mathdoc.fr/item/GT_2022_26_6_a6/

[1] J D Achter, S Casalaina-Martin, C Vial, On descending cohomology geometrically, Compos. Math. 153 (2017) 1446 | DOI

[2] O Benoist, J C Ottem, Two coniveau filtrations, Duke Math. J. 170 (2021) 2719 | DOI

[3] S Bloch, Lectures on algebraic cycles, 4, Duke University (1980)

[4] S Bloch, V Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983) 1235 | DOI

[5] C H Clemens, P A Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. 95 (1972) 281 | DOI

[6] J L Colliot-Thélène, C Voisin, Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J. 161 (2012) 735 | DOI

[7] P Deligne, Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5 | DOI

[8] R Hartshorne, A Hirschowitz, Smoothing algebraic space curves, from: "Algebraic geometry" (editors E Casas-Alvero, G E Welters, S Xambó-Descamps), Lecture Notes in Math. 1124, Springer (1985) 98 | DOI

[9] J Kollár, Y Miyaoka, S Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992) 429

[10] M Letizia, The Abel–Jacobi mapping for the quartic threefold, Invent. Math. 75 (1984) 477 | DOI

[11] J P Murre, Applications of algebraic K–theory to the theory of algebraic cycles, from: "Algebraic geometry" (editors E Casas-Alvero, G E Welters, S Xambó-Descamps), Lecture Notes in Math. 1124, Springer (1985) 216 | DOI

[12] M Shen, Rationality, universal generation and the integral Hodge conjecture, Geom. Topol. 23 (2019) 2861 | DOI

[13] I Shimada, On the cylinder homomorphisms of Fano complete intersections, J. Math. Soc. Japan 42 (1990) 719 | DOI

[14] F Suzuki, A remark on a 3–fold constructed by Colliot-Thélène and Voisin, Math. Res. Lett. 27 (2020) 301

[15] C Vial, Niveau and coniveau filtrations on cohomology groups and Chow groups, Proc. Lond. Math. Soc. 106 (2013) 410 | DOI

[16] C Voisin, Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2003) | DOI

[17] C Voisin, Remarks on curve classes on rationally connected varieties, from: "A celebration of algebraic geometry" (editors B Hassett, J McKernan, J Starr, R Vakil), Clay Math. Proc. 18, Amer. Math. Soc. (2013) 591

[18] C Voisin, Unirational threefolds with no universal codimension 2 cycle, Invent. Math. 201 (2015) 207 | DOI

[19] C Voisin, On the universal CH0 group of cubic hypersurfaces, J. Eur. Math. Soc. 19 (2017) 1619 | DOI

[20] C Voisin, Birational invariants and decomposition of the diagonal, from: "Birational geometry of hypersurfaces" (editors A Hochenegger, M Lehn, P Stellari), Lecture Notes Un. Mat. Ital. 26, Springer (2019) 3 | DOI

[21] M E Walker, The morphic Abel–Jacobi map, Compos. Math. 143 (2007) 909 | DOI

[22] G E Welters, Abel–Jacobi isogenies for certain types of Fano threefolds, 141, Math. Centrum (1981)