On the existence of minimal hypersurfaces with arbitrarily large area and Morse index
Geometry & topology, Tome 26 (2022) no. 6, pp. 2713-2729.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that a bumpy closed Riemannian manifold (Mn+1,g) with 3 n + 1 7 admits a sequence of connected closed embedded two-sided minimal hypersurfaces whose areas and Morse indices both tend to infinity. This improves a previous result by O Chodosh and C Mantoulidis (Int. Math. Res. Not. (2021) 10841–10847) on connected minimal hypersurfaces with arbitrarily large area.

Keywords: minimal surfaces, area, Morse index, min–max theory

Li, Yangyang 1

1 Department of Mathematics, Princeton University, Princeton, NJ, United States
@article{GT_2022_26_6_a5,
     author = {Li, Yangyang},
     title = {On the existence of minimal hypersurfaces with arbitrarily large area and {Morse} index},
     journal = {Geometry & topology},
     pages = {2713--2729},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/GT_2022_26_6_a5/}
}
TY  - JOUR
AU  - Li, Yangyang
TI  - On the existence of minimal hypersurfaces with arbitrarily large area and Morse index
JO  - Geometry & topology
PY  - 2022
SP  - 2713
EP  - 2729
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2022_26_6_a5/
ID  - GT_2022_26_6_a5
ER  - 
%0 Journal Article
%A Li, Yangyang
%T On the existence of minimal hypersurfaces with arbitrarily large area and Morse index
%J Geometry & topology
%D 2022
%P 2713-2729
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2022_26_6_a5/
%F GT_2022_26_6_a5
Li, Yangyang. On the existence of minimal hypersurfaces with arbitrarily large area and Morse index. Geometry & topology, Tome 26 (2022) no. 6, pp. 2713-2729. http://geodesic.mathdoc.fr/item/GT_2022_26_6_a5/

[1] F J Almgren Jr., The homotopy groups of the integral cycle groups, PhD thesis, Brown University (1962)

[2] F J Almgren Jr., The theory of varifolds : a variational calculus in the large for the k–dimensional area integrand, lecture notes (1965)

[3] L Ambrozio, A Carlotto, B Sharp, Compactness analysis for free boundary minimal hypersurfaces, Calc. Var. Partial Differential Equations 57 (2018) | DOI

[4] O Chodosh, C Mantoulidis, Minimal surfaces and the Allen–Cahn equation on 3–manifolds : index, multiplicity, and curvature estimates, Ann. of Math. 191 (2020) 213 | DOI

[5] O Chodosh, C Mantoulidis, Minimal hypersurfaces with arbitrarily large area, Int. Math. Res. Not. 2021 (2021) 10841 | DOI

[6] T H Colding, N Hingston, Metrics without Morse index bounds, Duke Math. J. 119 (2003) 345 | DOI

[7] T H Colding, W P Minicozzi Ii, Examples of embedded minimal tori without area bounds, Int. Math. Res. Not. 1999 (1999) 1097 | DOI

[8] P Gaspar, M A M Guaraco, The Weyl law for the phase transition spectrum and density of limit interfaces, Geom. Funct. Anal. 29 (2019) 382 | DOI

[9] M A M Guaraco, Min-max for phase transitions and the existence of embedded minimal hypersurfaces, J. Differential Geom. 108 (2018) 91 | DOI

[10] J Hass, P Norbury, J H Rubinstein, Minimal spheres of arbitrarily high Morse index, Comm. Anal. Geom. 11 (2003) 425 | DOI

[11] K Irie, F C Marques, A Neves, Density of minimal hypersurfaces for generic metrics, Ann. of Math. 187 (2018) 963 | DOI

[12] M M C Li, X Zhou, Min-max theory for free boundary minimal hypersurfaces, I : Regularity theory, J. Differential Geom. 118 (2021) 487 | DOI

[13] Y Li, Existence of infinitely many minimal hypersurfaces in higher-dimensional closed manifolds with generic metrics, (2019)

[14] Y Liokumovich, F C Marques, A Neves, Weyl law for the volume spectrum, Ann. of Math. 187 (2018) 933 | DOI

[15] F C Marques, A Neves, Min-max theory and the Willmore conjecture, Ann. of Math. 179 (2014) 683 | DOI

[16] F C Marques, A Neves, Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math. 4 (2016) 463 | DOI

[17] F C Marques, A Neves, Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math. 209 (2017) 577 | DOI

[18] F C Marques, A Neves, Morse index of multiplicity one min-max minimal hypersurfaces, Adv. Math. 378 (2021) | DOI

[19] F C Marques, A Neves, A Song, Equidistribution of minimal hypersurfaces for generic metrics, Invent. Math. 216 (2019) 421 | DOI

[20] J T Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, 27, Princeton Univ. Press (1981) | DOI

[21] J T Pitts, J H Rubinstein, Applications of minimax to minimal surfaces and the topology of 3–manifolds, from: "Miniconference on geometry and partial differential equations, II" (editors J E Hutchinson, L M Simon), Proc. Centre Math. Anal. Austral. Nat. Univ. 12, The Australian National University (1987) 137

[22] R Schoen, L Simon, Regularity of stable minimal hypersurfaces, Comm. Pure Appl. Math. 34 (1981) 741 | DOI

[23] B Sharp, Compactness of minimal hypersurfaces with bounded index, J. Differential Geom. 106 (2017) 317 | DOI

[24] A Song, Existence of infinitely many minimal hypersurfaces in closed manifolds, preprint (2018)

[25] B White, The maximum principle for minimal varieties of arbitrary codimension, Comm. Anal. Geom. 18 (2010) 421 | DOI

[26] B White, On the bumpy metrics theorem for minimal submanifolds, Amer. J. Math. 139 (2017) 1149 | DOI

[27] S T Yau, Problem section, from: "Seminar on differential geometry" (editor S T Yau), Ann. of Math. Stud. 102, Princeton Univ. Press (1982) 669

[28] X Zhou, On the multiplicity one conjecture in min-max theory, Ann. of Math. 192 (2020) 767 | DOI

[29] X Zhou, J Zhu, Existence of hypersurfaces with prescribed mean curvature, I : Generic min-max, Camb. J. Math. 8 (2020) 311 | DOI