Classifying sections of del Pezzo fibrations, II
Geometry & topology, Tome 26 (2022) no. 6, pp. 2565-2647.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let X be a del Pezzo surface over the function field of a complex curve. We study the behavior of rational points on X leading to bounds on the counting function in the geometric Manin conjecture. A key tool is the movable bend-and-break lemma, which yields an inductive approach to classifying relatively free sections for a del Pezzo fibration over a curve. Using this lemma we prove the geometric Manin conjecture for certain split del Pezzo surfaces of degree 2 admitting a birational morphism to 2 over the ground field.

Keywords: section, del Pezzo fibration, Fujita invariant, geometric Manin's conjecture

Lehmann, Brian 1 ; Tanimoto, Sho 2

1 Department of Mathematics, Boston College, Chestnut Hill, MA, United States
2 Graduate School of Mathematics, Nagoya University, Nagoya, Japan
@article{GT_2022_26_6_a3,
     author = {Lehmann, Brian and Tanimoto, Sho},
     title = {Classifying sections of del {Pezzo} fibrations, {II}},
     journal = {Geometry & topology},
     pages = {2565--2647},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/GT_2022_26_6_a3/}
}
TY  - JOUR
AU  - Lehmann, Brian
AU  - Tanimoto, Sho
TI  - Classifying sections of del Pezzo fibrations, II
JO  - Geometry & topology
PY  - 2022
SP  - 2565
EP  - 2647
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2022_26_6_a3/
ID  - GT_2022_26_6_a3
ER  - 
%0 Journal Article
%A Lehmann, Brian
%A Tanimoto, Sho
%T Classifying sections of del Pezzo fibrations, II
%J Geometry & topology
%D 2022
%P 2565-2647
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2022_26_6_a3/
%F GT_2022_26_6_a3
Lehmann, Brian; Tanimoto, Sho. Classifying sections of del Pezzo fibrations, II. Geometry & topology, Tome 26 (2022) no. 6, pp. 2565-2647. http://geodesic.mathdoc.fr/item/GT_2022_26_6_a3/

[1] I Arzhantsev, U Derenthal, J Hausen, A Laface, Cox rings, 144, Cambridge Univ. Press (2015)

[2] E Ballico, On the Hilbert scheme of curves in a smooth quadric, from: "Deformations of mathematical structures" (editor J Ławrynowicz), Kluwer (1989) 127 | DOI

[3] V Batyrev, Distribution of rational points of bounded height, lecture (1988)

[4] V V Batyrev, Y I Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann. 286 (1990) 27 | DOI

[5] R Beheshti, B Lehmann, E Riedl, S Tanimoto, Moduli spaces of rational curves on Fano threefolds, Adv. Math. 408 (2022) | DOI

[6] S Bloch, V Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983) 1235 | DOI

[7] D Bourqui, Produit eulérien motivique et courbes rationnelles sur les variétés toriques, Compos. Math. 145 (2009) 1360 | DOI

[8] D Bourqui, Asymptotic behaviour of rational curves, preprint (2011)

[9] D Bourqui, Algebraic points, non-anticanonical heights and the Severi problem on toric varieties, Proc. Lond. Math. Soc. 113 (2016) 474 | DOI

[10] T Browning, W Sawin, A geometric version of the circle method, Ann. of Math. 191 (2020) 893 | DOI

[11] T Browning, P Vishe, Rational curves on smooth hypersurfaces of low degree, Algebra Number Theory 11 (2017) 1657 | DOI

[12] A Bruguières, The scheme of morphisms from an elliptic curve to a Grassmannian, Compos. Math. 63 (1987) 15

[13] A M Castravet, Rational families of vector bundles on curves, Int. J. Math. 15 (2004) 13 | DOI

[14] A Corti, Del Pezzo surfaces over Dedekind schemes, Ann. of Math. 144 (1996) 641 | DOI

[15] I Coskun, J Starr, Rational curves on smooth cubic hypersurfaces, Int. Math. Res. Not. 2009 (2009) 4626 | DOI

[16] J S Ellenberg, A Venkatesh, Counting extensions of function fields with bounded discriminant and specified Galois group, from: "Geometric methods in algebra and number theory" (editors F Bogomolov, Y Tschinkel), Progr. Math. 235, Birkhäuser (2005) 151 | DOI

[17] T Graber, J Harris, J Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003) 57 | DOI

[18] J Harris, M Roth, J Starr, Rational curves on hypersurfaces of low degree, J. Reine Angew. Math. 571 (2004) 73 | DOI

[19] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[20] B Hassett, S Tanimoto, Y Tschinkel, Balanced line bundles and equivariant compactifications of homogeneous spaces, Int. Math. Res. Not. 2015 (2015) 6375 | DOI

[21] F Hidaka, K Watanabe, Normal Gorenstein surfaces with ample anti-canonical divisor, Tokyo J. Math. 4 (1981) 319 | DOI

[22] D Huybrechts, M Lehn, The geometry of moduli spaces of sheaves, E31, Vieweg Sohn (1997) | DOI

[23] S Ishii, Moduli space of polarized del Pezzo surfaces and its compactification, Tokyo J. Math. 5 (1982) 289 | DOI

[24] Y Kawamata, Crepant blowing-up of 3–dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. 127 (1988) 93 | DOI

[25] B Kim, R Pandharipande, The connectedness of the moduli space of maps to homogeneous spaces, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. (2001) 187 | DOI

[26] J Kollár, Rational curves on algebraic varieties, 32, Springer (1996) | DOI

[27] J Kollár, S Mori, Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI

[28] B Lehmann, A K Sengupta, S Tanimoto, Geometric consistency of Manin’s conjecture, Compos. Math. 158 (2022) 1375 | DOI

[29] B Lehmann, S Tanimoto, On the geometry of thin exceptional sets in Manin’s conjecture, Duke Math. J. 166 (2017) 2815 | DOI

[30] B Lehmann, S Tanimoto, Classifying sections of del Pezzo fibrations, I, preprint (2019)

[31] B Lehmann, S Tanimoto, Geometric Manin’s conjecture and rational curves, Compos. Math. 155 (2019) 833 | DOI

[32] B Lehmann, S Tanimoto, On exceptional sets in Manin’s conjecture, Res. Math. Sci. 6 (2019) | DOI

[33] B Lehmann, S Tanimoto, Rational curves on prime Fano threefolds of index 1, J. Algebraic Geom. 30 (2021) 151 | DOI

[34] Y I Manin, Problems on rational points and rational curves on algebraic varieties, from: "Surveys in differential geometry, II" (editors C C Hsiung, S T Yau), International (1995) 214 | DOI

[35] K Matsuki, Introduction to the Mori program, Springer (2002) | DOI

[36] Y Mustopa, M Teixidor I Bigas, Rational curves on moduli spaces of vector bundles, preprint (2020)

[37] M Nagata, On self-intersection number of a section on a ruled surface, Nagoya Math. J. 37 (1970) 191 | DOI

[38] B Pasquier, N Perrin, Elliptic curves on some homogeneous spaces, Doc. Math. 18 (2013) 679

[39] N Perrin, Elliptic curves on spinor varieties, Cent. Eur. J. Math. 10 (2012) 1393 | DOI

[40] E Riedl, D Yang, Kontsevich spaces of rational curves on Fano hypersurfaces, J. Reine Angew. Math. 748 (2019) 207 | DOI

[41] M Shen, On the normal bundles of rational curves on Fano 3–folds, Asian J. Math. 16 (2012) 237 | DOI

[42] D Testa, The irreducibility of the spaces of rational curves on del Pezzo surfaces, J. Algebraic Geom. 18 (2009) 37 | DOI

[43] J F Thomsen, Irreducibility of M0,n(G∕P,β), Int. J. Math. 9 (1998) 367 | DOI

[44] Y Tschinkel, Algebraic varieties with many rational points, from: "Arithmetic geometry" (editors H Darmon, D A Ellwood, B Hassett, Y Tschinkel), Clay Math. Proc. 8, Amer. Math. Soc. (2009) 243 | DOI

[45] C Voisin, Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2003) | DOI

[46] C Voisin, On integral Hodge classes on uniruled or Calabi–Yau threefolds, from: "Moduli spaces and arithmetic geometry" (editors S Mukai, Y Miyaoka, S Mori, A Moriwaki, I Nakamura), Adv. Stud. Pure Math. 45, Math. Soc. Japan (2006) 43 | DOI