Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a del Pezzo surface over the function field of a complex curve. We study the behavior of rational points on leading to bounds on the counting function in the geometric Manin conjecture. A key tool is the movable bend-and-break lemma, which yields an inductive approach to classifying relatively free sections for a del Pezzo fibration over a curve. Using this lemma we prove the geometric Manin conjecture for certain split del Pezzo surfaces of degree admitting a birational morphism to over the ground field.
Lehmann, Brian 1 ; Tanimoto, Sho 2
@article{GT_2022_26_6_a3, author = {Lehmann, Brian and Tanimoto, Sho}, title = {Classifying sections of del {Pezzo} fibrations, {II}}, journal = {Geometry & topology}, pages = {2565--2647}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {2022}, url = {http://geodesic.mathdoc.fr/item/GT_2022_26_6_a3/} }
Lehmann, Brian; Tanimoto, Sho. Classifying sections of del Pezzo fibrations, II. Geometry & topology, Tome 26 (2022) no. 6, pp. 2565-2647. http://geodesic.mathdoc.fr/item/GT_2022_26_6_a3/
[1] Cox rings, 144, Cambridge Univ. Press (2015)
, , , ,[2] On the Hilbert scheme of curves in a smooth quadric, from: "Deformations of mathematical structures" (editor J Ławrynowicz), Kluwer (1989) 127 | DOI
,[3] Distribution of rational points of bounded height, lecture (1988)
,[4] Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann. 286 (1990) 27 | DOI
, ,[5] Moduli spaces of rational curves on Fano threefolds, Adv. Math. 408 (2022) | DOI
, , , ,[6] Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983) 1235 | DOI
, ,[7] Produit eulérien motivique et courbes rationnelles sur les variétés toriques, Compos. Math. 145 (2009) 1360 | DOI
,[8] Asymptotic behaviour of rational curves, preprint (2011)
,[9] Algebraic points, non-anticanonical heights and the Severi problem on toric varieties, Proc. Lond. Math. Soc. 113 (2016) 474 | DOI
,[10] A geometric version of the circle method, Ann. of Math. 191 (2020) 893 | DOI
, ,[11] Rational curves on smooth hypersurfaces of low degree, Algebra Number Theory 11 (2017) 1657 | DOI
, ,[12] The scheme of morphisms from an elliptic curve to a Grassmannian, Compos. Math. 63 (1987) 15
,[13] Rational families of vector bundles on curves, Int. J. Math. 15 (2004) 13 | DOI
,[14] Del Pezzo surfaces over Dedekind schemes, Ann. of Math. 144 (1996) 641 | DOI
,[15] Rational curves on smooth cubic hypersurfaces, Int. Math. Res. Not. 2009 (2009) 4626 | DOI
, ,[16] Counting extensions of function fields with bounded discriminant and specified Galois group, from: "Geometric methods in algebra and number theory" (editors F Bogomolov, Y Tschinkel), Progr. Math. 235, Birkhäuser (2005) 151 | DOI
, ,[17] Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003) 57 | DOI
, , ,[18] Rational curves on hypersurfaces of low degree, J. Reine Angew. Math. 571 (2004) 73 | DOI
, , ,[19] Algebraic geometry, 52, Springer (1977) | DOI
,[20] Balanced line bundles and equivariant compactifications of homogeneous spaces, Int. Math. Res. Not. 2015 (2015) 6375 | DOI
, , ,[21] Normal Gorenstein surfaces with ample anti-canonical divisor, Tokyo J. Math. 4 (1981) 319 | DOI
, ,[22] The geometry of moduli spaces of sheaves, E31, Vieweg Sohn (1997) | DOI
, ,[23] Moduli space of polarized del Pezzo surfaces and its compactification, Tokyo J. Math. 5 (1982) 289 | DOI
,[24] Crepant blowing-up of 3–dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. 127 (1988) 93 | DOI
,[25] The connectedness of the moduli space of maps to homogeneous spaces, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. (2001) 187 | DOI
, ,[26] Rational curves on algebraic varieties, 32, Springer (1996) | DOI
,[27] Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI
, ,[28] Geometric consistency of Manin’s conjecture, Compos. Math. 158 (2022) 1375 | DOI
, , ,[29] On the geometry of thin exceptional sets in Manin’s conjecture, Duke Math. J. 166 (2017) 2815 | DOI
, ,[30] Classifying sections of del Pezzo fibrations, I, preprint (2019)
, ,[31] Geometric Manin’s conjecture and rational curves, Compos. Math. 155 (2019) 833 | DOI
, ,[32] On exceptional sets in Manin’s conjecture, Res. Math. Sci. 6 (2019) | DOI
, ,[33] Rational curves on prime Fano threefolds of index 1, J. Algebraic Geom. 30 (2021) 151 | DOI
, ,[34] Problems on rational points and rational curves on algebraic varieties, from: "Surveys in differential geometry, II" (editors C C Hsiung, S T Yau), International (1995) 214 | DOI
,[35] Introduction to the Mori program, Springer (2002) | DOI
,[36] Rational curves on moduli spaces of vector bundles, preprint (2020)
, ,[37] On self-intersection number of a section on a ruled surface, Nagoya Math. J. 37 (1970) 191 | DOI
,[38] Elliptic curves on some homogeneous spaces, Doc. Math. 18 (2013) 679
, ,[39] Elliptic curves on spinor varieties, Cent. Eur. J. Math. 10 (2012) 1393 | DOI
,[40] Kontsevich spaces of rational curves on Fano hypersurfaces, J. Reine Angew. Math. 748 (2019) 207 | DOI
, ,[41] On the normal bundles of rational curves on Fano 3–folds, Asian J. Math. 16 (2012) 237 | DOI
,[42] The irreducibility of the spaces of rational curves on del Pezzo surfaces, J. Algebraic Geom. 18 (2009) 37 | DOI
,[43] Irreducibility of M0,n(G∕P,β), Int. J. Math. 9 (1998) 367 | DOI
,[44] Algebraic varieties with many rational points, from: "Arithmetic geometry" (editors H Darmon, D A Ellwood, B Hassett, Y Tschinkel), Clay Math. Proc. 8, Amer. Math. Soc. (2009) 243 | DOI
,[45] Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2003) | DOI
,[46] On integral Hodge classes on uniruled or Calabi–Yau threefolds, from: "Moduli spaces and arithmetic geometry" (editors S Mukai, Y Miyaoka, S Mori, A Moriwaki, I Nakamura), Adv. Stud. Pure Math. 45, Math. Soc. Japan (2006) 43 | DOI
,