Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The Kodaira embedding theorem provides an effective characterization of projectivity of a Kähler manifold in terms the second cohomology. X Yang (2018) proved that any compact Kähler manifold with positive holomorphic sectional curvature must be projective. This gives a metric criterion of the projectivity in terms of its curvature. We prove that any compact Kähler manifold with positive scalar curvature (which is the average of holomorphic sectional curvature over –dimensional subspaces of the tangent space) must be projective. In view of generic –tori being nonabelian, this new curvature characterization is sharp in certain sense.
Ni, Lei 1 ; Zheng, Fangyang 2
@article{GT_2022_26_6_a1, author = {Ni, Lei and Zheng, Fangyang}, title = {Positivity and the {Kodaira} embedding theorem}, journal = {Geometry & topology}, pages = {2491--2505}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {2022}, url = {http://geodesic.mathdoc.fr/item/GT_2022_26_6_a1/} }
Ni, Lei; Zheng, Fangyang. Positivity and the Kodaira embedding theorem. Geometry & topology, Tome 26 (2022) no. 6, pp. 2491-2505. http://geodesic.mathdoc.fr/item/GT_2022_26_6_a1/
[1] On projective Kähler manifolds of partially positive curvature and rational connectedness, Doc. Math. 25 (2020) 219 | DOI
, ,[2] On the curvature of rational surfaces, from: "Differential geometry, II" (editors S S Chern, R Osserman), Proc. Symp. Pure Math. 27, Amer. Math. Soc. (1975) 65 | DOI
,[3] Matrix analysis, Cambridge Univ. Press (2013)
, ,[4] Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) | DOI
,[5] Rationally connected varieties, J. Algebraic Geom. 1 (1992) 429
, , ,[6] Three-circle theorem and dimension estimate for holomorphic functions on Kähler manifolds, Duke Math. J. 165 (2016) 2899 | DOI
,[7] Complex manifolds, Holt, Rinehart and Winston (1971)
, ,[8] Vanishing theorems on complete Kähler manifolds and their applications, J. Differential Geom. 50 (1998) 89
,[9] The fundamental group, rational connectedness and the positivity of Kähler manifolds, J. Reine Angew. Math. 774 (2021) 267 | DOI
,[10] Liouville theorems and a Schwarz lemma for holomorphic mappings between Kähler manifolds, Comm. Pure Appl. Math. 74 (2021) 1100 | DOI
,[11] Comparison and vanishing theorems for Kähler manifolds, Calc. Var. Partial Differential Equations 57 (2018) | DOI
, ,[12] On orthogonal Ricci curvature, from: "Advances in complex geometry" (editors Y A Rubinstein, B Shiffman), Contemp. Math. 735, Amer. Math. Soc. (2019) 203 | DOI
, ,[13] On Kählerian manifolds with positive holomorphic sectional curvature, Proc. Japan Acad. 33 (1957) 333
,[14] On the homotopy types of compact Kähler and complex projective manifolds, Invent. Math. 157 (2004) 329 | DOI
,[15] Negative holomorphic curvature and positive canonical bundle, Invent. Math. 204 (2016) 595 | DOI
, ,[16] RC-positivity, rational connectedness and Yau’s conjecture, Camb. J. Math. 6 (2018) 183 | DOI
,[17] Problem section, from: "Seminar on differential geometry" (editor S T Yau), Ann. of Math. Stud. 102, Princeton Univ. Press (1982) 669 | DOI
,