Positivity and the Kodaira embedding theorem
Geometry & topology, Tome 26 (2022) no. 6, pp. 2491-2505.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The Kodaira embedding theorem provides an effective characterization of projectivity of a Kähler manifold in terms the second cohomology. X Yang (2018) proved that any compact Kähler manifold with positive holomorphic sectional curvature must be projective. This gives a metric criterion of the projectivity in terms of its curvature. We prove that any compact Kähler manifold with positive 2 nd scalar curvature (which is the average of holomorphic sectional curvature over 2–dimensional subspaces of the tangent space) must be projective. In view of generic 2–tori being nonabelian, this new curvature characterization is sharp in certain sense.

Classification : 53C55, 53C44
Keywords: Kähler manifolds, projective embedding, compact complex manifolds, Kähler metrics, positive holomorphic sectional curvature, $k^{\text{th}}$ scalar curvature

Ni, Lei 1 ; Zheng, Fangyang 2

1 Department of Mathematics, University of California, San Diego, La Jolla, CA, United States
2 School of Mathematical Sciences, Chongqing Normal University Chongqing, China
@article{GT_2022_26_6_a1,
     author = {Ni, Lei and Zheng, Fangyang},
     title = {Positivity and the {Kodaira} embedding theorem},
     journal = {Geometry & topology},
     pages = {2491--2505},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/GT_2022_26_6_a1/}
}
TY  - JOUR
AU  - Ni, Lei
AU  - Zheng, Fangyang
TI  - Positivity and the Kodaira embedding theorem
JO  - Geometry & topology
PY  - 2022
SP  - 2491
EP  - 2505
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2022_26_6_a1/
ID  - GT_2022_26_6_a1
ER  - 
%0 Journal Article
%A Ni, Lei
%A Zheng, Fangyang
%T Positivity and the Kodaira embedding theorem
%J Geometry & topology
%D 2022
%P 2491-2505
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2022_26_6_a1/
%F GT_2022_26_6_a1
Ni, Lei; Zheng, Fangyang. Positivity and the Kodaira embedding theorem. Geometry & topology, Tome 26 (2022) no. 6, pp. 2491-2505. http://geodesic.mathdoc.fr/item/GT_2022_26_6_a1/

[1] G Heier, B Wong, On projective Kähler manifolds of partially positive curvature and rational connectedness, Doc. Math. 25 (2020) 219 | DOI

[2] N Hitchin, On the curvature of rational surfaces, from: "Differential geometry, II" (editors S S Chern, R Osserman), Proc. Symp. Pure Math. 27, Amer. Math. Soc. (1975) 65 | DOI

[3] R A Horn, C R Johnson, Matrix analysis, Cambridge Univ. Press (2013)

[4] S Kobayashi, Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) | DOI

[5] J Kollár, Y Miyaoka, S Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992) 429

[6] G Liu, Three-circle theorem and dimension estimate for holomorphic functions on Kähler manifolds, Duke Math. J. 165 (2016) 2899 | DOI

[7] J Morrow, K Kodaira, Complex manifolds, Holt, Rinehart and Winston (1971)

[8] L Ni, Vanishing theorems on complete Kähler manifolds and their applications, J. Differential Geom. 50 (1998) 89

[9] L Ni, The fundamental group, rational connectedness and the positivity of Kähler manifolds, J. Reine Angew. Math. 774 (2021) 267 | DOI

[10] L Ni, Liouville theorems and a Schwarz lemma for holomorphic mappings between Kähler manifolds, Comm. Pure Appl. Math. 74 (2021) 1100 | DOI

[11] L Ni, F Zheng, Comparison and vanishing theorems for Kähler manifolds, Calc. Var. Partial Differential Equations 57 (2018) | DOI

[12] L Ni, F Zheng, On orthogonal Ricci curvature, from: "Advances in complex geometry" (editors Y A Rubinstein, B Shiffman), Contemp. Math. 735, Amer. Math. Soc. (2019) 203 | DOI

[13] Y Tsukamoto, On Kählerian manifolds with positive holomorphic sectional curvature, Proc. Japan Acad. 33 (1957) 333

[14] C Voisin, On the homotopy types of compact Kähler and complex projective manifolds, Invent. Math. 157 (2004) 329 | DOI

[15] D Wu, S T Yau, Negative holomorphic curvature and positive canonical bundle, Invent. Math. 204 (2016) 595 | DOI

[16] X Yang, RC-positivity, rational connectedness and Yau’s conjecture, Camb. J. Math. 6 (2018) 183 | DOI

[17] S T Yau, Problem section, from: "Seminar on differential geometry" (editor S T Yau), Ann. of Math. Stud. 102, Princeton Univ. Press (1982) 669 | DOI