Quantisation of derived Lagrangians
Geometry & topology, Tome 26 (2022) no. 6, pp. 2405-2489.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We investigate quantisations of line bundles on derived Lagrangians X over 0–shifted symplectic derived Artin N–stacks Y . In our derived setting, a deformation quantisation consists of a curved A– deformation of the structure sheaf 𝒪Y , equipped with a curved A–morphism to the ring of differential operators on ; for line bundles on smooth Lagrangian subvarieties of smooth symplectic algebraic varieties, this simplifies to deforming (,𝒪Y ) to a DQ module over a DQ algebroid.

For each choice of formality isomorphism between the E2– and P2–operads, we construct a map from the space of nondegenerate quantisations to power series with coefficients in relative cohomology groups of the respective de Rham complexes. When is a square root of the dualising line bundle, this leads to an equivalence between even power series and certain anti-involutive quantisations, ensuring that the deformation quantisations always exist for such line bundles. This gives rise to a dg category of algebraic Lagrangians, an algebraic Fukaya category of the form envisaged by Behrend and Fantechi. We also sketch a generalisation of these quantisation results to Lagrangians on higher n–shifted symplectic derived stacks.

Classification : 14A22, 14D23, 53D55
Keywords: deformation quantisation, derived algebraic geometry, Lagrangians

Pridham, Jonathan P 1

1 School of Mathematics and Maxwell Institute, The University of Edinburgh, Edinburgh, United Kingdom
@article{GT_2022_26_6_a0,
     author = {Pridham, Jonathan P},
     title = {Quantisation of derived {Lagrangians}},
     journal = {Geometry & topology},
     pages = {2405--2489},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/GT_2022_26_6_a0/}
}
TY  - JOUR
AU  - Pridham, Jonathan P
TI  - Quantisation of derived Lagrangians
JO  - Geometry & topology
PY  - 2022
SP  - 2405
EP  - 2489
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2022_26_6_a0/
ID  - GT_2022_26_6_a0
ER  - 
%0 Journal Article
%A Pridham, Jonathan P
%T Quantisation of derived Lagrangians
%J Geometry & topology
%D 2022
%P 2405-2489
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2022_26_6_a0/
%F GT_2022_26_6_a0
Pridham, Jonathan P. Quantisation of derived Lagrangians. Geometry & topology, Tome 26 (2022) no. 6, pp. 2405-2489. http://geodesic.mathdoc.fr/item/GT_2022_26_6_a0/

[1] V Baranovsky, V Ginzburg, D Kaledin, J Pecharich, Quantization of line bundles on Lagrangian subvarieties, Selecta Math. 22 (2016) 1 | DOI

[2] K Behrend, B Fantechi, Gerstenhaber and Batalin–Vilkovisky structures on Lagrangian intersections, from: "Algebra, arithmetic, and geometry : in honor of Yu I Manin, I" (editors Y Tschinkel, Y Zarhin), Progr. Math. 269, Birkhäuser (2009) 1 | DOI

[3] O Ben-Bassat, C Brav, V Bussi, D Joyce, A “Darboux theorem” for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol. 19 (2015) 1287 | DOI

[4] E Bouaziz, I Grojnowski, A d–shifted Darboux theorem, preprint (2013)

[5] C Braun, Involutive A∞–algebras and dihedral cohomology, J. Homotopy Relat. Struct. 9 (2014) 317 | DOI

[6] C Braun, A Lazarev, Homotopy BV algebras in Poisson geometry, Trans. Moscow Math. Soc. (2013) 217 | DOI

[7] C Brav, V Bussi, D Dupont, D Joyce, B Szendrői, Symmetries and stabilization for sheaves of vanishing cycles, J. Singul. 11 (2015) 85 | DOI

[8] D Calaque, T Pantev, B Toën, M Vaquié, G Vezzosi, Shifted Poisson structures and deformation quantization, J. Topol. 10 (2017) 483 | DOI

[9] D Calaque, T Willwacher, Triviality of the higher formality theorem, Proc. Amer. Math. Soc. 143 (2015) 5181 | DOI

[10] K Costello, O Gwilliam, Factorization algebras in quantum field theory, II, 41, Cambridge Univ. Press (2021) | DOI

[11] A D’Agnolo, P Schapira, Quantization of complex Lagrangian submanifolds, Adv. Math. 213 (2007) 358 | DOI

[12] A I Efimov, Cyclic homology of categories of matrix factorizations, Int. Math. Res. Not. 2018 (2018) 3834 | DOI

[13] B L Feigin, B L Tsygan, Additive K–theory and crystalline cohomology, Funktsional. Anal. i Prilozhen. 19 (1985) 52 | DOI

[14] D Gaitsgory, N Rozenblyum, Crystals and D–modules, Pure Appl. Math. Q. 10 (2014) 57 | DOI

[15] G Ginot, Higher order Hochschild cohomology, C. R. Math. Acad. Sci. Paris 346 (2008) 5 | DOI

[16] W M Goldman, J J Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988) 43 | DOI

[17] V Hinich, DG coalgebras as formal stacks, J. Pure Appl. Algebra 162 (2001) 209 | DOI

[18] D C Isaksen, Strict model structures for pro-categories, from: "Categorical decomposition techniques in algebraic topology" (editors G Arone, J Hubbuck, R Levi, M Weiss), Progr. Math. 215, Birkhäuser (2004) 179 | DOI

[19] D Joyce, “Fukaya categories” of complex Lagrangians in complex symplectic manifolds, lecture notes (2016)

[20] T Kadeishvili, On the cobar construction of a bialgebra, Homology Homotopy Appl. 7 (2005) 109

[21] A Kapustin, L Rozansky, Three-dimensional topological field theory and symplectic algebraic geometry, II, Commun. Number Theory Phys. 4 (2010) 463 | DOI

[22] M Kashiwara, P Schapira, Constructibility and duality for simple holonomic modules on complex symplectic manifolds, Amer. J. Math. 130 (2008) 207 | DOI

[23] M Kashiwara, P Schapira, Deformation quantization modules, 345, Soc. Math. France (2012)

[24] H M Khudaverdian, T T Voronov, Higher Poisson brackets and differential forms, from: "Geometric methods in physics" (editors P Kielanowski, A Odzijewicz, M Schlichenmaier, T Voronov), AIP Conf. Proc. 1079, Amer. Inst. Phys. (2008) 203 | DOI

[25] M Kontsevich, Topics in algebra: deformation theory, lecture notes (1994)

[26] M Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999) 35 | DOI

[27] M Kontsevich, Deformation quantization of algebraic varieties, Lett. Math. Phys. 56 (2001) 271 | DOI

[28] O Kravchenko, Deformations of Batalin–Vilkovisky algebras, from: "Poisson geometry" (editors J Grabowski, P Urbański), Banach Center Publ. 51, Polish Acad. Sci. Inst. Math. (2000) 131

[29] J L Loday, B Vallette, Algebraic operads, 346, Springer (2012) | DOI

[30] J Lurie, Higher algebra, preprint (2017)

[31] M Manetti, Deformation theory via differential graded Lie algebras, from: "Seminari di geometria algebrica", Scuola Norm. Sup. (1999) 21

[32] V Melani, P Safronov, Derived coisotropic structures, I : Affine case, Selecta Math. 24 (2018) 3061 | DOI

[33] V Melani, P Safronov, Derived coisotropic structures, II : Stacks and quantization, Selecta Math. 24 (2018) 3119 | DOI

[34] T Pantev, B Toën, M Vaquié, G Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 271 | DOI

[35] D Petersen, Minimal models, GT-action and formality of the little disk operad, Selecta Math. 20 (2014) 817 | DOI

[36] J P Pridham, Unifying derived deformation theories, Adv. Math. 224 (2010) 772 | DOI

[37] J P Pridham, Presenting higher stacks as simplicial schemes, Adv. Math. 238 (2013) 184 | DOI

[38] J P Pridham, Real non-abelian mixed Hodge structures for quasi-projective varieties : formality and splitting, 1150, Amer. Math. Soc. (2016) | DOI

[39] J P Pridham, Quantisation of derived Poisson structures, preprint (2017)

[40] J P Pridham, Shifted Poisson and symplectic structures on derived N–stacks, J. Topol. 10 (2017) 178 | DOI

[41] J P Pridham, Deformation quantisation for unshifted symplectic structures on derived Artin stacks, Selecta Math. 24 (2018) 3027 | DOI

[42] J P Pridham, An outline of shifted Poisson structures and deformation quantisation in derived differential geometry, preprint (2018)

[43] J P Pridham, Deformation quantisation for (−1)–shifted symplectic structures and vanishing cycles, Algebr. Geom. 6 (2019) 747 | DOI

[44] J P Pridham, A note on étale atlases for Artin stacks, Poisson structures and quantisation, preprint (2019)

[45] C Sabbah, On a twisted de Rham complex, II, preprint (2010)

[46] P Safronov, Poisson reduction as a coisotropic intersection, High. Struct. 1 (2017) 87

[47] P Safronov, Braces and Poisson additivity, Compos. Math. 154 (2018) 1698 | DOI

[48] P Schapira, Microlocal analysis and beyond, from: "New spaces in mathematics: formal and conceptual reflections" (editors M Anel, G Catren), Cambridge Univ. Press (2021) 117 | DOI

[49] A A Voronov, Homotopy Gerstenhaber algebras, from: "Conférence Moshé Flato 1999, II" (editors G Dito, D Sternheimer), Math. Phys. Stud. 22, Kluwer (2000) 307 | DOI

[50] J Young, Brace bar-cobar duality, preprint (2013)