Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a complex analytic germ in , the standard Hermitian metric of induces a natural arc-length metric on , called the inner metric. We study the inner metric structure of the germ of an isolated complex surface singularity by means of an infinite family of numerical analytic invariants, called inner rates. Our main result is a formula for the Laplacian of the inner rate function on a space of valuations, the nonarchimedean link of . We deduce in particular that the global data consisting of the topology of , together with the configuration of a generic hyperplane section and of the polar curve of a generic plane projection of , completely determine all the inner rates on , and hence the local metric structure of the germ. Several other applications of our formula are discussed.
Belotto da Silva, André 1 ; Fantini, Lorenzo 2 ; Pichon, Anne 1
@article{GT_2022_26_1_a4, author = {Belotto da Silva, Andr\'e and Fantini, Lorenzo and Pichon, Anne}, title = {Inner geometry of complex surfaces: a valuative approach}, journal = {Geometry & topology}, pages = {163--219}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2022}, url = {http://geodesic.mathdoc.fr/item/GT_2022_26_1_a4/} }
TY - JOUR AU - Belotto da Silva, André AU - Fantini, Lorenzo AU - Pichon, Anne TI - Inner geometry of complex surfaces: a valuative approach JO - Geometry & topology PY - 2022 SP - 163 EP - 219 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/GT_2022_26_1_a4/ ID - GT_2022_26_1_a4 ER -
Belotto da Silva, André; Fantini, Lorenzo; Pichon, Anne. Inner geometry of complex surfaces: a valuative approach. Geometry & topology, Tome 26 (2022) no. 1, pp. 163-219. http://geodesic.mathdoc.fr/item/GT_2022_26_1_a4/
[1] Les Contes du chat perché, Gallimard (1946)
,[2] Weight functions on Berkovich curves, Algebra Number Theory 10 (2016) 2053 | DOI
, ,[3] Resolution of singularities of the cotangent sheaf of a singular variety, Adv. Math. 307 (2017) 780 | DOI
, , , ,[4] On Lipschitz normally embedded complex surface germs, preprint (2020)
, , ,[5] Spectral theory and analytic geometry over non-Archimedean fields, 33, Amer. Math. Soc. (1990) | DOI
,[6] Tangent spaces and Gromov–Hausdorff limits of subanalytic spaces, J. Reine Angew. Math. 608 (2007) 1 | DOI
, ,[7] The thick-thin decomposition and the bilipschitz classification of normal surface singularities, Acta Math. 212 (2014) 199 | DOI
, , ,[8] Résolution des singularités de surfaces par éclatements normalisés (multiplicité, multiplicité polaire, et singularités minimales), from: "Trends in singularities" (editors A Libgober, M Tibăr), Birkhäuser (2002) 31
, ,[9] La trivialité topologique n’implique pas les conditions de Whitney, C. R. Acad. Sci. Paris Sér. A-B 280 (1975)
, ,[10] On the Hodge theory of Riemannian pseudomanifolds, from: "Geometry of the Laplace operator" (editors R Osserman, A Weinstein), Proc. Sympos. Pure Math. XXXVI, Amer. Math. Soc. (1980) 91
,[11] Divisors and sandpiles: an introduction to chip-firing, Amer. Math. Soc. (2018) | DOI
, ,[12] Ascending and descending, lithograph (1960)
,[13] Normalized Berkovich spaces and surface singularities, Trans. Amer. Math. Soc. 370 (2018) 7815 | DOI
,[14] Links of sandwiched surface singularities and self-similarity, Manuscripta Math. 162 (2020) 23 | DOI
, , ,[15] Galois descent of semi-affinoid spaces, Math. Z. 290 (2018) 1085 | DOI
, ,[16] Holomorphic self-maps of singular rational surfaces, Publ. Mat. 54 (2010) 389 | DOI
,[17] The valuative tree, 1853, Springer (2004) | DOI
, ,[18] The valuative tree is the projective limit of Eggers–Wall trees, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113 (2019) 4051 | DOI
, , ,[19] Ultrametric properties for valuation spaces of normal surface singularities, Trans. Amer. Math. Soc. 372 (2019) 8423 | DOI
, , , ,[20] Concentration multi-échelles de courbure dans des fibres de Milnor, Comment. Math. Helv. 74 (1999) 398 | DOI
, ,[21] Local dynamics of non-invertible maps near normal surface singularities, 1337, Amer. Math. Soc. (2021) | DOI
, ,[22] Résolution de Nash des points doubles rationnels, Ann. Inst. Fourier Grenoble 32 (1982) 111
,[23] Der Gauss–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975) 235 | DOI
,[24] L2–cohomology of normal algebraic surfaces, I, Invent. Math. 81 (1985) 395 | DOI
, ,[25] Dynamics of Berkovich spaces in low dimensions, from: "Berkovich spaces and applications" (editors A Ducros, C Favre, J Nicaise), Lecture Notes in Math. 2119, Springer (2015) 205 | DOI
,[26] Distance géodésique sur un sous-analytique, Rev. Mat. Univ. Complut. Madrid 10 (1997) 173
, ,[27] Normal two-dimensional singularities, 71, Princeton Univ. Press (1971) | DOI
,[28] Computation of the Milnor number of an isolated singularity of a complete intersection, Funkcional. Anal. i Priložen. 8 (1974) 45
,[29] Geometry of complex surface singularities, from: "Singularities" (editors J P Brasselet, T Suwa), Adv. Stud. Pure Math. 29, Kinokuniya (2000) 163 | DOI
,[30] Variétés polaires locales et classes de Chern des variétés singulières, Ann. of Math. 114 (1981) 457 | DOI
, ,[31] Hypercohomology of Milnor fibres, Topology 35 (1996) 969 | DOI
,[32] Pseudo-periodic maps and degeneration of Riemann surfaces, 2030, Springer (2011) | DOI
, ,[33] On the growth behaviour of Hironaka quotients, J. Singul. 20 (2020) 31 | DOI
, ,[34] Jacobian curves for normal complex surfaces, from: "Singularities, II" (editors J P Brasselet, J L Cisneros-Molina, D Massey, J Seade, B Teissier), Contemp. Math. 475, Amer. Math. Soc. (2008) 135 | DOI
,[35] Lipschitz equisingularity, Dissertationes Math. Rozprawy Mat. 243 (1985) 46
,[36] Remarks on the L2–cohomology of singular algebraic surfaces, J. Math. Soc. Japan 41 (1989) 97 | DOI
,[37] A characterization of Lipschitz normally embedded surface singularities, J. Lond. Math. Soc. 101 (2020) 612 | DOI
, , ,[38] Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier Grenoble 38 (1988) 189 | DOI
,[39] A non-normally embedded complex normal surface with normally embedded reduced tangent cone,
, ,[40] Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Ann. of Math. 131 (1990) 411 | DOI
,[41] Variétés polaires, II : Multiplicités polaires, sections planes, et conditions de Whitney, from: "Algebraic geometry" (editors J M Aroca, R Buchweitz, M Giusti, M Merle), Lecture Notes in Math. 961, Springer (1982) 314 | DOI
,[42] The reduction of the singularities of an algebraic surface, Ann. of Math. 40 (1939) 639 | DOI
,