Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that for the harmonic measure associated to a random walk on satisfying some mild conditions, a typical tree in the boundary of Outer space is trivalent and nongeometric. This result answers a question of Mladen Bestvina.
Kapovich, Ilya 1 ; Maher, Joseph 2 ; Pfaff, Catherine 3 ; Taylor, Samuel J 4
@article{GT_2022_26_1_a3, author = {Kapovich, Ilya and Maher, Joseph and Pfaff, Catherine and Taylor, Samuel J}, title = {Random trees in the boundary of outer space}, journal = {Geometry & topology}, pages = {127--162}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2022}, url = {http://geodesic.mathdoc.fr/item/GT_2022_26_1_a3/} }
TY - JOUR AU - Kapovich, Ilya AU - Maher, Joseph AU - Pfaff, Catherine AU - Taylor, Samuel J TI - Random trees in the boundary of outer space JO - Geometry & topology PY - 2022 SP - 127 EP - 162 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/GT_2022_26_1_a3/ ID - GT_2022_26_1_a3 ER -
Kapovich, Ilya; Maher, Joseph; Pfaff, Catherine; Taylor, Samuel J. Random trees in the boundary of outer space. Geometry & topology, Tome 26 (2022) no. 1, pp. 127-162. http://geodesic.mathdoc.fr/item/GT_2022_26_1_a3/
[1] Strongly contracting geodesics in outer space, Geom. Topol. 15 (2011) 2181 | DOI
,[2] Stable strata of geodesics in outer space, Int. Math. Res. Not. 2019 (2019) 4549 | DOI
, , ,[3] Outer limits, preprint (1994)
, ,[4] Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014) 104 | DOI
, ,[5] Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215 | DOI
, , ,[6] On the topological dimension of the Gromov boundaries of some hyperbolic Out(FN)–graphs, Pacific J. Math. 308 (2020) 1 | DOI
, , ,[7] The boundary of the complex of free factors, Duke Math. J. 164 (2015) 2213 | DOI
, ,[8] Very small group actions on R–trees and Dehn twist automorphisms, Topology 34 (1995) 575 | DOI
, ,[9] Botany of irreducible automorphisms of free groups, Pacific J. Math. 256 (2012) 291 | DOI
, ,[10] R–trees and laminations for free groups, I : Algebraic laminations, J. Lond. Math. Soc. 78 (2008) 723 | DOI
, , ,[11] R–trees and laminations for free groups, II : The dual lamination of an R–tree, J. Lond. Math. Soc. 78 (2008) 737 | DOI
, , ,[12] Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91 | DOI
, ,[13] Spectral theorems for random walks on mapping class groups and out (FN), Int. Math. Res. Not. 2018 (2018) 2693 | DOI
, ,[14] The co-surface graph and the geometry of hyperbolic free group extensions, J. Topol. 10 (2017) 447 | DOI
, ,[15] Hyperbolic extensions of free groups, Geom. Topol. 22 (2018) 517 | DOI
, ,[16] Metric properties of outer space, Publ. Mat. 55 (2011) 433 | DOI
, ,[17] The rank of actions on R–trees, Ann. Sci. École Norm. Sup. 28 (1995) 549 | DOI
, ,[18] Recurrence of quadratic differentials for harmonic measure, Math. Proc. Cambridge Philos. Soc. 169 (2020) 299 | DOI
, ,[19] The boundary of the free splitting graph and the free factor graph, preprint (2012)
,[20] Axes in outer space, 1004, Amer. Math. Soc. (2011) | DOI
, ,[21] The Poisson boundary of Out(FN), Duke Math. J. 165 (2016) 341 | DOI
,[22] Central limit theorems for mapping class groups and Out(FN), Geom. Topol. 22 (2018) 105 | DOI
,[23] Random outer automorphisms of free groups: attracting trees and their singularity structures, Trans. Amer. Math. Soc. 375 (2022) 525 | DOI
, , , ,[24] Random walks on weakly hyperbolic groups, J. Reine Angew. Math. 742 (2018) 187 | DOI
, ,[25] Lone axes in outer space, Algebr. Geom. Topol. 16 (2016) 3385 | DOI
, ,[26] Ergodic decompositions for folding and unfolding paths in outer space, preprint (2014)
, , ,[27] The Gromov topology on R–trees, Topology Appl. 32 (1989) 197 | DOI
,[28] Reducing systems for very small trees, preprint (2012)
,[29] Random extensions of free groups and surface groups are hyperbolic, Int. Math. Res. Not. 2016 (2016) 294 | DOI
, ,