Boundaries of relative factor graphs and subgroup classification for automorphisms of free products
Geometry & topology, Tome 26 (2022) no. 1, pp. 71-126.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a countable group G splitting as a free product G = G1 Gk FN, we establish classification results for subgroups of the group Out(G,) of all outer automorphisms of G that preserve the conjugacy class of each Gi. We show that every finitely generated subgroup H Out(G,) either contains a relatively fully irreducible automorphism, or else it virtually preserves the conjugacy class of a proper free factor relative to the decomposition (the finite generation hypothesis on H can be dropped for G = FN, or more generally when G is toral relatively hyperbolic). In the first case, either H virtually preserves a nonperipheral conjugacy class in G, or else H contains an atoroidal automorphism. The key geometric tool to obtain these classification results is a description of the Gromov boundaries of relative versions of the free factor graph FF and the 𝒵–factor graph 𝒵F, as spaces of equivalence classes of arational trees and relatively free arational trees, respectively. We also identify the loxodromic isometries of FF with the fully irreducible elements of Out(G,), and loxodromic isometries of 𝒵F with the fully irreducible atoroidal outer automorphisms.

Classification : 20E06, 20E07, 20E08, 20E36
Keywords: automorphism groups of free groups and free products, subgroup classification, Gromov hyperbolic spaces, Gromov boundaries, free factor graph

Guirardel, Vincent 1 ; Horbez, Camille 2

1 Institut de recherche en mathématiques de Rennes, UMR 6625, Université de Rennes 1 et CNRS, Rennes, France
2 Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
@article{GT_2022_26_1_a2,
     author = {Guirardel, Vincent and Horbez, Camille},
     title = {Boundaries of relative factor graphs and subgroup classification for automorphisms of free products},
     journal = {Geometry & topology},
     pages = {71--126},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/GT_2022_26_1_a2/}
}
TY  - JOUR
AU  - Guirardel, Vincent
AU  - Horbez, Camille
TI  - Boundaries of relative factor graphs and subgroup classification for automorphisms of free products
JO  - Geometry & topology
PY  - 2022
SP  - 71
EP  - 126
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2022_26_1_a2/
ID  - GT_2022_26_1_a2
ER  - 
%0 Journal Article
%A Guirardel, Vincent
%A Horbez, Camille
%T Boundaries of relative factor graphs and subgroup classification for automorphisms of free products
%J Geometry & topology
%D 2022
%P 71-126
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2022_26_1_a2/
%F GT_2022_26_1_a2
Guirardel, Vincent; Horbez, Camille. Boundaries of relative factor graphs and subgroup classification for automorphisms of free products. Geometry & topology, Tome 26 (2022) no. 1, pp. 71-126. http://geodesic.mathdoc.fr/item/GT_2022_26_1_a2/

[1] M Bestvina, M Feighn, Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014) 104 | DOI

[2] M Bestvina, P Reynolds, The boundary of the complex of free factors, Duke Math. J. 164 (2015) 2213 | DOI

[3] M Clay, C Uyanik, Atoroidal dynamics of subgroups of Out(FN), J. Lond. Math. Soc. 102 (2020) 818 | DOI

[4] M Culler, J W Morgan, Group actions on R–trees, Proc. Lond. Math. Soc. 55 (1987) 571 | DOI

[5] S Dowdall, S J Taylor, The co-surface graph and the geometry of hyperbolic free group extensions, J. Topol. 10 (2017) 447 | DOI

[6] S Francaviglia, A Martino, Stretching factors, metrics and train tracks for free products, Illinois J. Math. 59 (2015) 859 | DOI

[7] K Fujiwara, On the outer automorphism group of a hyperbolic group, Israel J. Math. 131 (2002) 277 | DOI

[8] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 | DOI

[9] V Guirardel, Limit groups and groups acting freely on Rn–trees, Geom. Topol. 8 (2004) 1427 | DOI

[10] V Guirardel, C Horbez, Algebraic laminations for free products and arational trees, Algebr. Geom. Topol. 19 (2019) 2283 | DOI

[11] V Guirardel, G Levitt, The outer space of a free product, Proc. Lond. Math. Soc. 94 (2007) 695 | DOI

[12] V Guirardel, G Levitt, McCool groups of toral relatively hyperbolic groups, Algebr. Geom. Topol. 15 (2015) 3485 | DOI

[13] V Guirardel, G Levitt, JSJ decompositions of groups, 395, Soc. Math. France (2017) | DOI

[14] V Guirardel, G Levitt, Wandering subtrees and stabilizers of points in the boundary of outer space, in preparation (2021)

[15] R Gupta, Loxodromic elements for the relative free factor complex, Geom. Dedicata 196 (2018) 91 | DOI

[16] U Hamenstädt, The boundary of the free splitting graph and the free factor graph, preprint (2012)

[17] M Handel, L Mosher, Subgroup classification in Out(Fn), preprint (2009)

[18] M Handel, L Mosher, The free splitting complex of a free group, I : Hyperbolicity, Geom. Topol. 17 (2013) 1581 | DOI

[19] M Handel, L Mosher, Relative free splitting and free factor complexes, I: Hyperbolicity, preprint (2014)

[20] M Handel, L Mosher, Subgroup decomposition in Out(Fn), 1280, Amer. Math. Soc. (2020) | DOI

[21] A Hatcher, K Vogtmann, The complex of free factors of a free group, Q. J. Math. Oxford 49 (1998) 459 | DOI

[22] C Horbez, The Tits alternative for the automorphism group of a free product, preprint (2014)

[23] C Horbez, Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, J. Topol. 9 (2016) 401 | DOI

[24] C Horbez, A short proof of Handel and Mosher’s alternative for subgroups of Out(FN), Groups Geom. Dyn. 10 (2016) 709 | DOI

[25] C Horbez, The boundary of the outer space of a free product, Israel J. Math. 221 (2017) 179 | DOI

[26] N V Ivanov, Subgroups of Teichmüller modular groups, 115, Amer. Math. Soc. (1992) | DOI

[27] V A Kaimanovich, H Masur, The Poisson boundary of the mapping class group, Invent. Math. 125 (1996) 221 | DOI

[28] I Kapovich, M Lustig, Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol. 13 (2009) 1805 | DOI

[29] I Kapovich, M Lustig, Stabilizers of R–trees with free isometric actions of FN, J. Group Theory 14 (2011) 673 | DOI

[30] I Kapovich, K Rafi, On hyperbolicity of free splitting and free factor complexes, Groups Geom. Dyn. 8 (2014) 391 | DOI

[31] T Kobayashi, Heights of simple loops and pseudo-Anosov homeomorphisms, from: "Braids" (editors J S Birman, A Libgober), Contemp. Math. 78, Amer. Math. Soc. (1988) 327 | DOI

[32] A Kurosh, Die Untergruppen der freien Produkte von beliebigen Gruppen, Math. Ann. 109 (1934) 647 | DOI

[33] G Levitt, Graphs of actions on R–trees, Comment. Math. Helv. 69 (1994) 28 | DOI

[34] B Mann, Hyperbolicity of the cyclic splitting graph, Geom. Dedicata 173 (2014) 271 | DOI

[35] B Mann, Some hyperbolic Out(FN)–graphs and nonunique ergodicity of very small FN–trees, PhD thesis, University of Utah (2014)

[36] A Martino, E Ventura, Fixed subgroups are compressed in free groups, Comm. Algebra 32 (2004) 3921 | DOI

[37] P Reynolds, Reducing systems for very small trees, preprint (2012)

[38] C Uyanik, Generalized north-south dynamics on the space of geodesic currents, Geom. Dedicata 177 (2015) 129 | DOI