Homology of torus knots
Geometry & topology, Tome 26 (2022) no. 1, pp. 47-70.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Using the method of Elias and Hogancamp and combinatorics of toric braids from our proof of the rational shuffle conjecture, we give an explicit formula for the triply graded Khovanov–Rozansky homology (superpolynomial) of an arbitrary positive torus knot, thereby proving some of the conjectures of Aganagic and Shakirov, Cherednik, Gorsky and Negut, and Oblomkov, Rasmussen and Shende.

Classification : 05A15, 05E05, 57M27
Keywords: torus knots, Khovanov–Rozansky homology, Dyck paths, rational shuffle conjecture

Mellit, Anton 1

1 Faculty of Mathematics, University of Vienna, Vienna, Austria
@article{GT_2022_26_1_a1,
     author = {Mellit, Anton},
     title = {Homology of torus knots},
     journal = {Geometry & topology},
     pages = {47--70},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/GT_2022_26_1_a1/}
}
TY  - JOUR
AU  - Mellit, Anton
TI  - Homology of torus knots
JO  - Geometry & topology
PY  - 2022
SP  - 47
EP  - 70
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2022_26_1_a1/
ID  - GT_2022_26_1_a1
ER  - 
%0 Journal Article
%A Mellit, Anton
%T Homology of torus knots
%J Geometry & topology
%D 2022
%P 47-70
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2022_26_1_a1/
%F GT_2022_26_1_a1
Mellit, Anton. Homology of torus knots. Geometry & topology, Tome 26 (2022) no. 1, pp. 47-70. http://geodesic.mathdoc.fr/item/GT_2022_26_1_a1/

[1] M Aganagic, S Shakirov, Knot homology from refined Chern–Simons theory, preprint (2011)

[2] F Bergeron, A Garsia, E Sergel Leven, G Xin, Compositional (km,kn)–shuffle conjectures, Int. Math. Res. Not. 2016 (2016) 4229 | DOI

[3] E Carlsson, E Gorsky, A Mellit, The Aq,t algebra and parabolic flag Hilbert schemes, Math. Ann. 376 (2020) 1303 | DOI

[4] E Carlsson, A Mellit, A proof of the shuffle conjecture, J. Amer. Math. Soc. 31 (2018) 661 | DOI

[5] I Cherednik, Jones polynomials of torus knots via DAHA, Int. Math. Res. Not. 2013 (2013) 5366 | DOI

[6] I Cherednik, I Danilenko, DAHA and iterated torus knots, Algebr. Geom. Topol. 16 (2016) 843 | DOI

[7] B Elias, M Hogancamp, On the computation of torus link homology, Compos. Math. 155 (2019) 164 | DOI

[8] E Gorsky, M Mazin, Compactified Jacobians and q,t–Catalan numbers, I, J. Combin. Theory Ser. A 120 (2013) 49 | DOI

[9] E Gorsky, A Neguţ, Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. 104 (2015) 403 | DOI

[10] S Gukov, A Schwarz, C Vafa, Khovanov–Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005) 53 | DOI

[11] J Haglund, M Haiman, N Loehr, J B Remmel, A Ulyanov, A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005) 195 | DOI

[12] T Hikita, Affine Springer fibers of type A and combinatorics of diagonal coinvariants, Adv. Math. 263 (2014) 88 | DOI

[13] M Hogancamp, Khovanov–Rozansky homology and higher Catalan sequences, preprint (2017)

[14] M Hogancamp, Categorified Young symmetrizers and stable homology of torus links, Geom. Topol. 22 (2018) 2943 | DOI

[15] M Hogancamp, A Mellit, Torus link homology, preprint (2019)

[16] M Khovanov, Triply-graded link homology and Hochschild homology of Soergel bimodules, Int. J. Math. 18 (2007) 869 | DOI

[17] A Mellit, Toric braids and (m,n)–parking functions, Duke Math. J. 170 (2021) 4123 | DOI

[18] A Oblomkov, J Rasmussen, V Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link, Geom. Topol. 22 (2018) 645 | DOI

[19] H Ooguri, C Vafa, Knot invariants and topological strings, Nuclear Phys. B 577 (2000) 419 | DOI

[20] O Schiffmann, E Vasserot, The elliptic Hall algebra and the K–theory of the Hilbert scheme of A2, Duke Math. J. 162 (2013) 279 | DOI

[21] A T Wilson, Torus link homology and the nabla operator, J. Combin. Theory Ser. A 154 (2018) 129 | DOI