On the total curvature and Betti numbers of complex projective manifolds
Geometry & topology, Tome 26 (2022) no. 1, pp. 1-45.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove an inequality between the sum of the Betti numbers of a complex projective manifold and its total curvature, and we characterize the complex projective manifolds whose total curvature is minimal. These results extend the classical theorems of Chern and Lashof to complex projective space.

Classification : 53C55, 51N35, 53C65
Keywords: total curvature, complex projective manifolds, Betti number estimates, Chern-Lashof theorems

Hoisington, Joseph Ansel 1

1 Department of Mathematics, University of Pennsylvania, Philadelphia, PA, United States, Department of Mathematics, University of Georgia, Athens, GA, United States
@article{GT_2022_26_1_a0,
     author = {Hoisington, Joseph Ansel},
     title = {On the total curvature and {Betti} numbers of complex projective manifolds},
     journal = {Geometry & topology},
     pages = {1--45},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/GT_2022_26_1_a0/}
}
TY  - JOUR
AU  - Hoisington, Joseph Ansel
TI  - On the total curvature and Betti numbers of complex projective manifolds
JO  - Geometry & topology
PY  - 2022
SP  - 1
EP  - 45
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2022_26_1_a0/
ID  - GT_2022_26_1_a0
ER  - 
%0 Journal Article
%A Hoisington, Joseph Ansel
%T On the total curvature and Betti numbers of complex projective manifolds
%J Geometry & topology
%D 2022
%P 1-45
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2022_26_1_a0/
%F GT_2022_26_1_a0
Hoisington, Joseph Ansel. On the total curvature and Betti numbers of complex projective manifolds. Geometry & topology, Tome 26 (2022) no. 1, pp. 1-45. http://geodesic.mathdoc.fr/item/GT_2022_26_1_a0/

[1] A N Badus, Morse theory and the Gauss–Bonnet formula, Master’s thesis, University of Pennsylvania (2007)

[2] E Calabi, Isometric imbedding of complex manifolds, Ann. of Math. 58 (1953) 1 | DOI

[3] D I Cartwright, T Steger, Enumeration of the 50 fake projective planes, C. R. Math. Acad. Sci. Paris 348 (2010) 11 | DOI

[4] T E Cecil, Geometric applications of critical point theory to submanifolds of complex projective space, Nagoya Math. J. 55 (1974) 5 | DOI

[5] S S Chern, R K Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957) 306 | DOI

[6] S S Chern, R K Lashof, On the total curvature of immersed manifolds, II, Michigan Math. J. 5 (1958) 5

[7] I Fáry, Sur la courbure totale d’une courbe gauche faisant un nœud, Bull. Soc. Math. France 77 (1949) 128

[8] H Federer, Some theorems on integral currents, Trans. Amer. Math. Soc. 117 (1965) 43 | DOI

[9] W Fenchel, Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929) 238 | DOI

[10] W Fenchel, On total curvatures of Riemannian manifolds, I, J. Lond. Math. Soc. 15 (1940) 15 | DOI

[11] F J Flaherty, The volume of a tube in complex projective space, Illinois J. Math. 16 (1972) 627

[12] A Gray, Volumes of tubes about complex submanifolds of complex projective space, Trans. Amer. Math. Soc. 291 (1985) 437 | DOI

[13] A Gray, Tubes, Addison-Wesley (1990)

[14] A Gray, L Vanhecke, The volumes of tubes in a Riemannian manifold, Rend. Sem. Mat. Univ. Politec. Torino 39 (1981) 1

[15] X Gual Arnau, A M Naveira, Total curvatures of compact complex submanifolds in CPn, Ann. Global Anal. Geom. 13 (1995) 9 | DOI

[16] H Hopf, Über die Curvatura integra geschlossener Hyperflächen, Math. Ann. 95 (1926) 340 | DOI

[17] D Hulin, Kähler–Einstein metrics and projective embeddings, J. Geom. Anal. 10 (2000) 525 | DOI

[18] D Huybrechts, Complex geometry: an introduction, Springer (2005) | DOI

[19] T Ishihara, Total curvatures of Kaehler manifolds in complex projective spaces, Geom. Dedicata 20 (1986) 307 | DOI

[20] N Koike, Theorems of Gauss–Bonnet and Chern–Lashof types in a simply connected symmetric space of non-positive curvature, Tokyo J. Math. 26 (2003) 527 | DOI

[21] N Koike, The Gauss–Bonnet and Chern–Lashof theorems in a simply connected symmetric space of compact type, Tokyo J. Math. 28 (2005) 483 | DOI

[22] C B Allendoerfer, The Euler number of a Riemann manifold, Amer. J. Math. 62 (1940) 243 | DOI

[23] J W Milnor, On the total curvature of knots, Ann. of Math. 52 (1950) 248 | DOI

[24] J Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964) 275 | DOI

[25] J Nash, C1 isometric imbeddings, Ann. of Math. 60 (1954) 383 | DOI

[26] J Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956) 20 | DOI

[27] G Prasad, S K Yeung, Fake projective planes, Invent. Math. 168 (2007) 321 | DOI

[28] G Reeb, Sur certaines propriétés topologiques des variétés feuilletées, from: "Sur les espaces fibrés et les variétés feuilletées", Actualités Sci. Ind. 1183, Hermann (1952) 91

[29] L Santaló, Curvaturas absolutas totales de variedades contenidas en un espacio euclidiano, Acta Cient. Compostelana 4 (1967) 149

[30] L A Santaló, Mean values and curvatures, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 5 (1970) 286

[31] J Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968) 62 | DOI

[32] R Thom, Sur l’homologie des variétés algébriques réelles, from: "Differential and combinatorial topology" (editor S S Cairns), Princeton Univ. Press (1965) 255 | DOI

[33] A Vitter, On the curvature of complex hypersurfaces, Indiana Univ. Math. J. 23 (1974) 813 | DOI

[34] H Weyl, On the volume of tubes, Amer. J. Math. 61 (1939) 461 | DOI

[35] T J Willmore, Total curvature in Riemannian geometry, Ellis Horwood (1982) 168

[36] R A Wolf, The volume of tubes in complex projective space, Trans. Amer. Math. Soc. 157 (1971) 347 | DOI