HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard Floer correspondence
Geometry & topology, Tome 24 (2020) no. 6, pp. 2855-3012.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the second of five papers that construct an isomorphism between the Seiberg–Witten Floer homology and the Heegaard Floer homology of a given compact, oriented 3–manifold. The isomorphism is given as a composition of three isomorphisms; the first of these relates a version of embedded contact homology on an auxiliary manifold to the Heegaard Floer homology on the original. This paper describes this auxiliary manifold, its geometry and the relationship between the generators of the embedded contact homology chain complex and those of the Heegaard Floer chain complex. The pseudoholomorphic curves that define the differential on the embedded contact homology chain complex are also described here as a first step to relate the differential on the latter complex with that on the Heegaard Floer complex.

Classification : 53C07, 53C15
Keywords: Seiberg–Witten Floer homology, Heegaard Floer homology

Kutluhan, Çağatay 1 ; Lee, Yi-Jen 2 ; Taubes, Clifford 3

1 Department of Mathematics, University at Buffalo, Buffalo, NY, United States
2 Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
3 Department of Mathematics, Harvard University, Cambridge, MA, United States
@article{GT_2020_24_6_a5,
     author = {Kutluhan, \c{C}a\u{g}atay and Lee, Yi-Jen and Taubes, Clifford},
     title = {HF = {HM,} {II} : {Reeb} orbits and holomorphic curves for the {ech/Heegaard} {Floer} correspondence},
     journal = {Geometry & topology},
     pages = {2855--3012},
     publisher = {mathdoc},
     volume = {24},
     number = {6},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/GT_2020_24_6_a5/}
}
TY  - JOUR
AU  - Kutluhan, Çağatay
AU  - Lee, Yi-Jen
AU  - Taubes, Clifford
TI  - HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard Floer correspondence
JO  - Geometry & topology
PY  - 2020
SP  - 2855
EP  - 3012
VL  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2020_24_6_a5/
ID  - GT_2020_24_6_a5
ER  - 
%0 Journal Article
%A Kutluhan, Çağatay
%A Lee, Yi-Jen
%A Taubes, Clifford
%T HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard Floer correspondence
%J Geometry & topology
%D 2020
%P 2855-3012
%V 24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2020_24_6_a5/
%F GT_2020_24_6_a5
Kutluhan, Çağatay; Lee, Yi-Jen; Taubes, Clifford. HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard Floer correspondence. Geometry & topology, Tome 24 (2020) no. 6, pp. 2855-3012. http://geodesic.mathdoc.fr/item/GT_2020_24_6_a5/

[1] L V Ahlfors, Complex analysis: an introduction to the theory of analytic functions of one complex variable, McGraw-Hill (1978)

[2] N Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. 36 (1957) 235

[3] M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI

[4] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations, I : Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337 | DOI

[5] C Hummel, Gromov’s compactness theorem for pseudo-holomorphic curves, 151, Birkhäuser (1997) | DOI

[6] M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. 4 (2002) 313 | DOI

[7] M Hutchings, The embedded contact homology index revisited, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263

[8] M Hutchings, Embedded contact homology and its applications, from: "Proceedings of the International Congress of Mathematicians" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan, P Gastesi), Hindustan Book Agency (2010) 1022

[9] M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of T3, Geom. Topol. 10 (2006) 169 | DOI

[10] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders, II, J. Symplectic Geom. 7 (2009) 29 | DOI

[11] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, Geom. Topol. 24 (2020) 2829 | DOI

[12] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, III : Holomorphic curves and the differential for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 3013 | DOI

[13] R Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955 | DOI

[14] D Mcduff, The local behaviour of holomorphic curves in almost complex 4–manifolds, J. Differential Geom. 34 (1991) 143 | DOI

[15] D Mcduff, D Salamon, J–holomorphic curves and quantum cohomology, 6, Amer. Math. Soc. (1994) | DOI

[16] C B Morrey Jr., Multiple integrals in the calculus of variations, 130, Springer (1966) | DOI

[17] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI

[18] P Ozsváth, Z Szabó, Heegaard diagrams and Floer homology, from: "International Congress of Mathematicians" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2006) 1083

[19] R Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math. 61 (2008) 1631 | DOI

[20] C H Taubes, SW ⇒ Gr : from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845 | DOI

[21] C H Taubes, A compendium of pseudoholomorphic beasts in R × (S1 × S2), Geom. Topol. 6 (2002) 657 | DOI

[22] C H Taubes, Pseudoholomorphic punctured spheres in R × (S1 × S2) : properties and existence, Geom. Topol. 10 (2006) 785 | DOI

[23] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, IV, Geom. Topol. 14 (2010) 2819 | DOI

[24] C H Taubes, Tamed to compatible: symplectic forms via moduli space integration, J. Symplectic Geom. 9 (2011) 161 | DOI

[25] V Turaev, Torsion invariants of Spinc–structures on 3–manifolds, Math. Res. Lett. 4 (1997) 679 | DOI

[26] J G Wolfson, Gromov’s compactness of pseudo-holomorphic curves and symplectic geometry, J. Differential Geom. 28 (1988) 383 | DOI

[27] R Ye, Gromov’s compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671 | DOI