Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a closed, connected and oriented –manifold. This article is the first of a five-part series that constructs an isomorphism between the Heegaard Floer homology groups of and the corresponding Seiberg–Witten Floer homology groups of .
Kutluhan, Çağatay 1 ; Lee, Yi-Jen 2 ; Taubes, Clifford 3
@article{GT_2020_24_6_a4, author = {Kutluhan, \c{C}a\u{g}atay and Lee, Yi-Jen and Taubes, Clifford}, title = {HF = {HM,} {I} : {Heegaard} {Floer} homology and {Seiberg{\textendash}Witten} {Floer} homology}, journal = {Geometry & topology}, pages = {2829--2854}, publisher = {mathdoc}, volume = {24}, number = {6}, year = {2020}, url = {http://geodesic.mathdoc.fr/item/GT_2020_24_6_a4/} }
TY - JOUR AU - Kutluhan, Çağatay AU - Lee, Yi-Jen AU - Taubes, Clifford TI - HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology JO - Geometry & topology PY - 2020 SP - 2829 EP - 2854 VL - 24 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/GT_2020_24_6_a4/ ID - GT_2020_24_6_a4 ER -
Kutluhan, Çağatay; Lee, Yi-Jen; Taubes, Clifford. HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology. Geometry & topology, Tome 24 (2020) no. 6, pp. 2829-2854. http://geodesic.mathdoc.fr/item/GT_2020_24_6_a4/
[1] Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, Proc. Natl. Acad. Sci. USA 108 (2011) 8100 | DOI
, , ,[2] The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, I, preprint (2012)
, , ,[3] The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, II, preprint (2012)
, , ,[4] The equivalence of Heegaard Floer homology and embedded contact homology, III: From hat to plus, preprint (2012)
, , ,[5] Embedded contact homology and its applications, from: "Proceedings of the International Congress of Mathematicians" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan, P Gastesi), Hindustan Book Agency (2010) 1022
,[6] The periodic Floer homology of a Dehn twist, Algebr. Geom. Topol. 5 (2005) 301 | DOI
, ,[7] Rounding corners of polygons and the embedded contact homology of T3, Geom. Topol. 10 (2006) 169 | DOI
, ,[8] Cyclic homology and equivariant homology, Invent. Math. 87 (1987) 403 | DOI
,[9] Periodic Floer pro-spectra from the Seiberg–Witten equations, preprint (2002)
, ,[10] Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI
, ,[11] HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard–Floer correspondence, Geom. Topol. 24 (2020) 2855 | DOI
, , ,[12] HF = HM, III : Holomorphic curves and the differential for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 3013 | DOI
, , ,[13] HF = HM, IV : The Seiberg–Witten Floer homology and ech correspondence, Geom. Topol. 24 (2020) 3219 | DOI
, , ,[14] HF = HM, V : Seiberg–Witten–Floer homology and handle addition, Geom. Topol. 24 (2020) 3471 | DOI
, , ,[15] Heegaard splittings and Seiberg–Witten monopoles, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 173
,[16] Periodic Floer homology and Seiberg–Witten–Floer cohomology, J. Symplectic Geom. 10 (2012) 81 | DOI
, ,[17] A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955 | DOI
,[18] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI
, ,[19] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI
, ,[20] Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 | DOI
,[21] Embedded contact homology and Seiberg–Witten Floer cohomology, II, Geom. Topol. 14 (2010) 2583 | DOI
,[22] Embedded contact homology and Seiberg–Witten Floer cohomology, III, Geom. Topol. 14 (2010) 2721 | DOI
,[23] Embedded contact homology and Seiberg–Witten Floer cohomology, IV, Geom. Topol. 14 (2010) 2819 | DOI
,[24] Embedded contact homology and Seiberg–Witten Floer cohomology, V, Geom. Topol. 14 (2010) 2961 | DOI
,