Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a smooth projective variety and a smooth divisor , we study relative Gromov–Witten invariants of and the corresponding orbifold Gromov–Witten invariants of the root stack . For sufficiently large , we prove that orbifold Gromov–Witten invariants of are polynomials in . Moreover, higher-genus relative Gromov–Witten invariants of are exactly the constant terms of the corresponding higher-genus orbifold Gromov–Witten invariants of . We also provide a new proof for the equality between genus-zero relative and orbifold Gromov–Witten invariants, originally proved by Abramovich, Cadman and Wise (2017). When is sufficiently large and is a curve, we prove that stationary relative invariants of are equal to the stationary orbifold invariants in all genera.
Tseng, Hsian-Hua 1 ; You, Fenglong 2
@article{GT_2020_24_6_a2, author = {Tseng, Hsian-Hua and You, Fenglong}, title = {Higher genus relative and orbifold {Gromov{\textendash}Witten} invariants}, journal = {Geometry & topology}, pages = {2749--2779}, publisher = {mathdoc}, volume = {24}, number = {6}, year = {2020}, url = {http://geodesic.mathdoc.fr/item/GT_2020_24_6_a2/} }
Tseng, Hsian-Hua; You, Fenglong. Higher genus relative and orbifold Gromov–Witten invariants. Geometry & topology, Tome 24 (2020) no. 6, pp. 2749-2779. http://geodesic.mathdoc.fr/item/GT_2020_24_6_a2/
[1] Lectures on Gromov–Witten invariants of orbifolds, from: "Enumerative invariants in algebraic geometry and string theory" (editors K Behrend, M Manetti), Lecture Notes in Math. 1947, Springer (2008) 1 | DOI
,[2] Relative and orbifold Gromov–Witten invariants, Algebr. Geom. 4 (2017) 472 | DOI
, , ,[3] Orbifold techniques in degeneration formulas, Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (2016) 519 | DOI
, ,[4] Algebraic orbifold quantum products, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 1 | DOI
, , ,[5] Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337 | DOI
, , ,[6] Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007) 405 | DOI
,[7] Enumeration of rational plane curves tangent to a smooth cubic, Adv. Math. 219 (2008) 316 | DOI
, ,[8] Orbifold Gromov–Witten theory of weighted blowups, preprint (2017)
, , ,[9] Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25 | DOI
, ,[10] Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys. 328 (2014) 669 | DOI
, , , ,[11] Higher genus relative Gromov–Witten theory and DR–cycles, preprint (2019)
, , ,[12] Structures in genus-zero relative Gromov–Witten theory, J. Topol. 13 (2020) 269 | DOI
, , ,[13] A “bottom up” characterization of smooth Deligne–Mumford stacks, Int. Math. Res. Not. 2017 (2017) 6469 | DOI
, ,[14] Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI
, ,[15] Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J. 130 (2005) 1 | DOI
, ,[16] Relative Gromov–Witten invariants, Ann. of Math. 157 (2003) 45 | DOI
, ,[17] Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017) 221 | DOI
, , , ,[18] Double ramification cycles with target varieties, preprint (2018)
, , , ,[19] Equivariant Gromov–Witten theory of one dimensional stacks, PhD thesis, University of Michigan (2009)
,[20] Abelian Hurwitz–Hodge integrals, Michigan Math. J. 60 (2011) 171 | DOI
, , ,[21] Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3–folds, Invent. Math. 145 (2001) 151 | DOI
, ,[22] A degeneration formula of GW–invariants, J. Differential Geom. 60 (2002) 199 | DOI
,[23] Localization in Gromov–Witten theory and orbifold Gromov–Witten theory, from: "Handbook of moduli, II" (editors G Farkas, I Morrison), Adv. Lect. Math. 25, International (2013) 353
,[24] A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007) 149 | DOI
, , ,[25] A topological view of Gromov–Witten theory, Topology 45 (2006) 887 | DOI
, ,[26] Localization for logarithmic stable maps, Trans. Amer. Math. Soc. Ser. B 6 (2019) 80 | DOI
, ,[27] Gromov–Witten invariants of P1 and Eynard–Orantin invariants, Geom. Topol. 18 (2014) 1865 | DOI
, ,[28] The equivariant Gromov–Witten theory of P1, Ann. of Math. 163 (2006) 561 | DOI
, ,[29] Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517 | DOI
, ,[30] Virasoro constraints for target curves, Invent. Math. 163 (2006) 47 | DOI
, ,[31] Gromov–Witten theory, Hurwitz numbers, and matrix models, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 325 | DOI
, ,[32] Orbifold quantum Riemann–Roch, Lefschetz and Serre, Geom. Topol. 14 (2010) 1 | DOI
,[33] Double ramification cycles on the moduli spaces of admissible covers, preprint (2016)
, ,[34] On orbifold Gromov–Witten theory in codimension one, J. Pure Appl. Algebra 220 (2016) 3567 | DOI
, ,