Higher genus relative and orbifold Gromov–Witten invariants
Geometry & topology, Tome 24 (2020) no. 6, pp. 2749-2779.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a smooth projective variety X and a smooth divisor D X, we study relative Gromov–Witten invariants of (X,D) and the corresponding orbifold Gromov–Witten invariants of the r th root stack XD,r. For sufficiently large r, we prove that orbifold Gromov–Witten invariants of XD,r are polynomials in r. Moreover, higher-genus relative Gromov–Witten invariants of (X,D) are exactly the constant terms of the corresponding higher-genus orbifold Gromov–Witten invariants of XD,r. We also provide a new proof for the equality between genus-zero relative and orbifold Gromov–Witten invariants, originally proved by Abramovich, Cadman and Wise (2017). When r is sufficiently large and X = C is a curve, we prove that stationary relative invariants of C are equal to the stationary orbifold invariants in all genera.

Classification : 14N35, 14H10
Keywords: relative Gromov–Witten invariants, root stacks, degeneration, virtual localization

Tseng, Hsian-Hua 1 ; You, Fenglong 2

1 Department of Mathematics, Ohio State University, Columbus, OH, United States
2 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada
@article{GT_2020_24_6_a2,
     author = {Tseng, Hsian-Hua and You, Fenglong},
     title = {Higher genus relative and orbifold {Gromov{\textendash}Witten} invariants},
     journal = {Geometry & topology},
     pages = {2749--2779},
     publisher = {mathdoc},
     volume = {24},
     number = {6},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/GT_2020_24_6_a2/}
}
TY  - JOUR
AU  - Tseng, Hsian-Hua
AU  - You, Fenglong
TI  - Higher genus relative and orbifold Gromov–Witten invariants
JO  - Geometry & topology
PY  - 2020
SP  - 2749
EP  - 2779
VL  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2020_24_6_a2/
ID  - GT_2020_24_6_a2
ER  - 
%0 Journal Article
%A Tseng, Hsian-Hua
%A You, Fenglong
%T Higher genus relative and orbifold Gromov–Witten invariants
%J Geometry & topology
%D 2020
%P 2749-2779
%V 24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2020_24_6_a2/
%F GT_2020_24_6_a2
Tseng, Hsian-Hua; You, Fenglong. Higher genus relative and orbifold Gromov–Witten invariants. Geometry & topology, Tome 24 (2020) no. 6, pp. 2749-2779. http://geodesic.mathdoc.fr/item/GT_2020_24_6_a2/

[1] D Abramovich, Lectures on Gromov–Witten invariants of orbifolds, from: "Enumerative invariants in algebraic geometry and string theory" (editors K Behrend, M Manetti), Lecture Notes in Math. 1947, Springer (2008) 1 | DOI

[2] D Abramovich, C Cadman, J Wise, Relative and orbifold Gromov–Witten invariants, Algebr. Geom. 4 (2017) 472 | DOI

[3] D Abramovich, B Fantechi, Orbifold techniques in degeneration formulas, Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (2016) 519 | DOI

[4] D Abramovich, T Graber, A Vistoli, Algebraic orbifold quantum products, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 1 | DOI

[5] D Abramovich, T Graber, A Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337 | DOI

[6] C Cadman, Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007) 405 | DOI

[7] C Cadman, L Chen, Enumeration of rational plane curves tangent to a smooth cubic, Adv. Math. 219 (2008) 316 | DOI

[8] B Chen, C Y Du, R Wang, Orbifold Gromov–Witten theory of weighted blowups, preprint (2017)

[9] W Chen, Y Ruan, Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25 | DOI

[10] P Dunin-Barkowski, N Orantin, S Shadrin, L Spitz, Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys. 328 (2014) 669 | DOI

[11] H Fan, L Wu, F You, Higher genus relative Gromov–Witten theory and DR–cycles, preprint (2019)

[12] H Fan, L Wu, F You, Structures in genus-zero relative Gromov–Witten theory, J. Topol. 13 (2020) 269 | DOI

[13] A Geraschenko, M Satriano, A “bottom up” characterization of smooth Deligne–Mumford stacks, Int. Math. Res. Not. 2017 (2017) 6469 | DOI

[14] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI

[15] T Graber, R Vakil, Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J. 130 (2005) 1 | DOI

[16] E N Ionel, T H Parker, Relative Gromov–Witten invariants, Ann. of Math. 157 (2003) 45 | DOI

[17] F Janda, R Pandharipande, A Pixton, D Zvonkine, Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017) 221 | DOI

[18] F Janda, R Pandharipande, A Pixton, D Zvonkine, Double ramification cycles with target varieties, preprint (2018)

[19] P D Johnson, Equivariant Gromov–Witten theory of one dimensional stacks, PhD thesis, University of Michigan (2009)

[20] P Johnson, R Pandharipande, H H Tseng, Abelian Hurwitz–Hodge integrals, Michigan Math. J. 60 (2011) 171 | DOI

[21] A M Li, Y Ruan, Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3–folds, Invent. Math. 145 (2001) 151 | DOI

[22] J Li, A degeneration formula of GW–invariants, J. Differential Geom. 60 (2002) 199 | DOI

[23] C C M Liu, Localization in Gromov–Witten theory and orbifold Gromov–Witten theory, from: "Handbook of moduli, II" (editors G Farkas, I Morrison), Adv. Lect. Math. 25, International (2013) 353

[24] C C M Liu, K Liu, J Zhou, A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007) 149 | DOI

[25] D Maulik, R Pandharipande, A topological view of Gromov–Witten theory, Topology 45 (2006) 887 | DOI

[26] S Molcho, E Routis, Localization for logarithmic stable maps, Trans. Amer. Math. Soc. Ser. B 6 (2019) 80 | DOI

[27] P Norbury, N Scott, Gromov–Witten invariants of P1 and Eynard–Orantin invariants, Geom. Topol. 18 (2014) 1865 | DOI

[28] A Okounkov, R Pandharipande, The equivariant Gromov–Witten theory of P1, Ann. of Math. 163 (2006) 561 | DOI

[29] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517 | DOI

[30] A Okounkov, R Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006) 47 | DOI

[31] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz numbers, and matrix models, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 325 | DOI

[32] H H Tseng, Orbifold quantum Riemann–Roch, Lefschetz and Serre, Geom. Topol. 14 (2010) 1 | DOI

[33] H H Tseng, F You, Double ramification cycles on the moduli spaces of admissible covers, preprint (2016)

[34] H H Tseng, F You, On orbifold Gromov–Witten theory in codimension one, J. Pure Appl. Algebra 220 (2016) 3567 | DOI