Eilenberg–Mac Lane spectra as equivariant Thom spectra
Geometry & topology, Tome 24 (2020) no. 6, pp. 2709-2748.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that the G–equivariant mod p Eilenberg–Mac Lane spectrum arises as an equivariant Thom spectrum for any finite, p–power cyclic group G, generalizing a result of Behrens and the second author in the case of the group C2. We also establish a construction of H¯(p), and prove intermediate results that may be of independent interest. Highlights include constraints on the Hurewicz images of equivariant spectra that admit norms, and an analysis of the extent to which the nonequivariant H 𝔽p arises as the Thom spectrum of a more than double loop map.

Classification : 55P43, 55P91
Keywords: Thom spectrum, equivariant, Mahowald, Eilenberg–MacLane

Hahn, Jeremy 1 ; Wilson, Dylan 2

1 Mathematics Department, Massachusetts Institute of Technology, Cambridge, MA, United States
2 Department of Mathematics, Harvard University, Cambridge, MA, United States
@article{GT_2020_24_6_a1,
     author = {Hahn, Jeremy and Wilson, Dylan},
     title = {Eilenberg{\textendash}Mac {Lane} spectra as equivariant {Thom} spectra},
     journal = {Geometry & topology},
     pages = {2709--2748},
     publisher = {mathdoc},
     volume = {24},
     number = {6},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/GT_2020_24_6_a1/}
}
TY  - JOUR
AU  - Hahn, Jeremy
AU  - Wilson, Dylan
TI  - Eilenberg–Mac Lane spectra as equivariant Thom spectra
JO  - Geometry & topology
PY  - 2020
SP  - 2709
EP  - 2748
VL  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2020_24_6_a1/
ID  - GT_2020_24_6_a1
ER  - 
%0 Journal Article
%A Hahn, Jeremy
%A Wilson, Dylan
%T Eilenberg–Mac Lane spectra as equivariant Thom spectra
%J Geometry & topology
%D 2020
%P 2709-2748
%V 24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2020_24_6_a1/
%F GT_2020_24_6_a1
Hahn, Jeremy; Wilson, Dylan. Eilenberg–Mac Lane spectra as equivariant Thom spectra. Geometry & topology, Tome 24 (2020) no. 6, pp. 2709-2748. http://geodesic.mathdoc.fr/item/GT_2020_24_6_a1/

[1] O Antolín-Camarena, T Barthel, A simple universal property of Thom ring spectra, J. Topol. 12 (2019) 56 | DOI

[2] M F Atiyah, G B Segal, Equivariant K–theory and completion, J. Differential Geom. 3 (1969) 1 | DOI

[3] T Bachmann, M Hoyois, Norms in motivic homotopy theory, preprint (2017)

[4] C Barwick, Spectral Mackey functors and equivariant algebraic K–theory, I, Adv. Math. 304 (2017) 646 | DOI

[5] C Barwick, E Dotto, S Glasman, D Nardin, J Shah, Parametrized higher category theory and higher algebra: a general introduction, preprint (2016)

[6] M Behrens, D Wilson, A C2–equivariant analog of Mahowald’s Thom spectrum theorem, Proc. Amer. Math. Soc. 146 (2018) 5003 | DOI

[7] P Bhattacharya, N Kitchloo, The p–local stable Adams conjecture and higher associative structures on Moore spectra, preprint (2018)

[8] A J Blumberg, R L Cohen, C Schlichtkrull, Topological Hochschild homology of Thom spectra and the free loop space, Geom. Topol. 14 (2010) 1165 | DOI

[9] A J Blumberg, M A Hill, Operadic multiplications in equivariant spectra, norms, and transfers, Adv. Math. 285 (2015) 658 | DOI

[10] E H Brown Jr., S Gitler, A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra, Topology 12 (1973) 283 | DOI

[11] E H Brown Jr., F P Peterson, On the stable decomposition of Ω2Sr+2, Trans. Amer. Math. Soc. 243 (1978) 287 | DOI

[12] F R Cohen, J P May, L R Taylor, K(Z,0) and K(Z2,0) as Thom spectra, Illinois J. Math. 25 (1981) 99 | DOI

[13] R L Cohen, The geometry of Ω2S3 and braid orientations, Invent. Math. 54 (1979) 53 | DOI

[14] S R Costenoble, S Waner, Fixed set systems of equivariant infinite loop spaces, Trans. Amer. Math. Soc. 326 (1991) 485 | DOI

[15] T Tom Dieck, Orbittypen und äquivariante Homologie, II, Arch. Math. (Basel) 26 (1975) 650 | DOI

[16] T Tom Dieck, Transformation groups and representation theory, 766, Springer (1979) | DOI

[17] W G Dwyer, H R Miller, C W Wilkerson, The homotopic uniqueness of BS3, from: "Algebraic topology" (editors J Aguadé, R Kane), Lecture Notes in Math. 1298, Springer (1987) 90 | DOI

[18] B Guillou, J P May, Models of G–spectra as presheaves of spectra, preprint (2011)

[19] H Hauschild, Äquivariante Konfigurationsräume und Abbildungsräume, from: "Topology Symposium" (editors U Koschorke, W D Neumann), Lecture Notes in Math. 788, Springer (1980) 281 | DOI

[20] M A Hill, On the algebras over equivariant little disks, preprint (2017)

[21] M A Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 | DOI

[22] D J Hunter, N J Kuhn, Mahowaldean families of elements in stable homotopy groups revisited, Math. Proc. Cambridge Philos. Soc. 127 (1999) 237 | DOI

[23] I M James, On the suspension sequence, Ann. of Math. 65 (1957) 74 | DOI

[24] M Karoubi, Algèbres de Clifford et K–théorie, Ann. Sci. École Norm. Sup. 1 (1968) 161 | DOI

[25] M Karoubi, Sur la K–théorie équivariante, from: "Séminaire Heidelberg-Saarbrücken-Strasbourg sur la –théorie" (editors A Dold, B Eckmann), Lecture Notes in Math. 136, Springer (1970) 187 | DOI

[26] M Karoubi, K–theory : an introduction, 226, Springer (1978) | DOI

[27] I Klang, The factorization theory of Thom spectra and twisted nonabelian Poincaré duality, Algebr. Geom. Topol. 18 (2018) 2541 | DOI

[28] W C Kronholm, The RO(G)–graded Serre spectral sequence, Homology Homotopy Appl. 12 (2010) 75 | DOI

[29] L G Lewis Jr., J P May, M Steinberger, Equivariant stable homotopy theory, 1213, Springer (1986) | DOI

[30] J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) | DOI

[31] M Mahowald, A new infinite family in 2π∗s, Topology 16 (1977) 249 | DOI

[32] M Mahowald, Ring spectra which are Thom complexes, Duke Math. J. 46 (1979) 549 | DOI

[33] M Mahowald, D C Ravenel, P Shick, The Thomified Eilenberg–Moore spectral sequence, from: "Cohomological methods in homotopy theory" (editors J Aguadé, C Broto, C Casacuberta), Progr. Math. 196, Birkhäuser (2001) 249 | DOI

[34] A Mathew, N Naumann, J Noel, On a nilpotence conjecture of J P May, J. Topol. 8 (2015) 917 | DOI

[35] A Mathew, V Stojanoska, The Picard group of topological modular forms via descent theory, Geom. Topol. 20 (2016) 3133 | DOI

[36] J E Mcclure, On the groups JOGX, I, Math. Z. 183 (1983) 229 | DOI

[37] D Nardin, Parametrized higher category theory and higher algebra, IV : Stability with respect to an orbital ∞–category, preprint (2016)

[38] S Priddy, K(Z∕2) as a Thom spectrum, Proc. Amer. Math. Soc. 70 (1978) 207 | DOI

[39] C Rezk, The units of a ring spectrum and a logarithmic cohomology operation, J. Amer. Math. Soc. 19 (2006) 969 | DOI

[40] C Rourke, B Sanderson, Equivariant configuration spaces, J. Lond. Math. Soc. 62 (2000) 544 | DOI

[41] S Schwede, Global homotopy theory, 34, Cambridge Univ. Press (2018) | DOI

[42] G Segal, Equivariant K–theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 129 | DOI

[43] G B Segal, Equivariant stable homotopy theory, from: "Actes du Congrès International des Mathématiciens, II" (editors M Berger, J Dieudonné, J Leray, J L Lions, P Malliavin, J P Serre), Gauthier-Villars (1971) 59

[44] K Shimakawa, Mackey systems of monoidal categories and G–spectra, –Theory 5 (1992) 373 | DOI

[45] J Stasheff, On homotopy abelian H–spaces, Proc. Cambridge Philos. Soc. 57 (1961) 734 | DOI

[46] S Waner, Equivariant classifying spaces and fibrations, Trans. Amer. Math. Soc. 258 (1980) 385 | DOI

[47] S Waner, Classification of oriented equivariant spherical fibrations, Trans. Amer. Math. Soc. 271 (1982) 313 | DOI