Kaledin’s degeneration theorem and topological Hochschild homology
Geometry & topology, Tome 24 (2020) no. 6, pp. 2675-2708.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a short proof of Kaledin’s theorem on the degeneration of the noncommutative Hodge-to-de Rham spectral sequence. Our approach is based on topological Hochschild homology and the theory of cyclotomic spectra. As a consequence, we also obtain relative versions of the degeneration theorem, both in characteristic zero and for regular bases in characteristic p.

Classification : 16E40, 55P43, 14A22
Keywords: topological Hochschild homology, Hodge-to-de Rham spectral sequence, differential graded categories

Mathew, Akhil 1

1 Department of Mathematics, University of Chicago, Chicago, IL, United States
@article{GT_2020_24_6_a0,
     author = {Mathew, Akhil},
     title = {Kaledin{\textquoteright}s degeneration theorem and topological {Hochschild} homology},
     journal = {Geometry & topology},
     pages = {2675--2708},
     publisher = {mathdoc},
     volume = {24},
     number = {6},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/GT_2020_24_6_a0/}
}
TY  - JOUR
AU  - Mathew, Akhil
TI  - Kaledin’s degeneration theorem and topological Hochschild homology
JO  - Geometry & topology
PY  - 2020
SP  - 2675
EP  - 2708
VL  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GT_2020_24_6_a0/
ID  - GT_2020_24_6_a0
ER  - 
%0 Journal Article
%A Mathew, Akhil
%T Kaledin’s degeneration theorem and topological Hochschild homology
%J Geometry & topology
%D 2020
%P 2675-2708
%V 24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GT_2020_24_6_a0/
%F GT_2020_24_6_a0
Mathew, Akhil. Kaledin’s degeneration theorem and topological Hochschild homology. Geometry & topology, Tome 24 (2020) no. 6, pp. 2675-2708. http://geodesic.mathdoc.fr/item/GT_2020_24_6_a0/

[1] V Angeltveit, A J Blumberg, T Gerhardt, M A Hill, T Lawson, M A Mandell, Topological cyclic homology via the norm, Doc. Math. 23 (2018) 2101 | DOI

[2] B Antieau, Periodic cyclic homology and derived de Rham cohomology, Ann. –Theory 4 (2019) 505 | DOI

[3] B Antieau, D Gepner, Brauer groups and étale cohomology in derived algebraic geometry, Geom. Topol. 18 (2014) 1149 | DOI

[4] B Antieau, A Mathew, T Nikolaus, On the Blumberg–Mandell Künneth theorem for TP, Selecta Math. 24 (2018) 4555 | DOI

[5] B Antieau, G Vezzosi, A remark on the Hochschild–Kostant–Rosenberg theorem in characteristic p, preprint (2017)

[6] D Ayala, A Mazel-Gee, N Rozenblyum, The geometry of the cyclotomic trace, preprint (2017)

[7] P Belmans, A J De Jong, Others, The Stacks project, electronic reference (2005–)

[8] B Bhatt, M Morrow, P Scholze, Topological Hochschild homology and integral p–adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019) 199 | DOI

[9] A J Blumberg, D Gepner, G Tabuada, A universal characterization of higher algebraic K–theory, Geom. Topol. 17 (2013) 733 | DOI

[10] A J Blumberg, D Gepner, G Tabuada, Uniqueness of the multiplicative cyclotomic trace, Adv. Math. 260 (2014) 191 | DOI

[11] A J Blumberg, M A Mandell, Localization theorems in topological Hochschild homology and topological cyclic homology, Geom. Topol. 16 (2012) 1053 | DOI

[12] A J Blumberg, M A Mandell, The homotopy theory of cyclotomic spectra, Geom. Topol. 19 (2015) 3105 | DOI

[13] A J Blumberg, M A Mandell, The strong Künneth theorem for topological periodic cyclic homology, preprint (2017)

[14] M Brun, Topological Hochschild homology of Z∕pn, J. Pure Appl. Algebra 148 (2000) 29 | DOI

[15] L Cohn, Differential graded categories are k–linear stable ∞–categories, preprint (2013)

[16] P Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. 35 (1968) 259

[17] P Deligne, L Illusie, Relèvements modulo p2 et décomposition du complexe de de Rham, Invent. Math. 89 (1987) 247 | DOI

[18] B I Dundas, M Morrow, Finite generation and continuity of topological Hochschild and cyclic homology, Ann. Sci. École Norm. Sup. 50 (2017) 201 | DOI

[19] M Emerton, M Kisin, An introduction to the Riemann–Hilbert correspondence for unit F–crystals, from: "Geometric aspects of Dwork theory, II" (editors A Adolphson, F Baldassarri, P Berthelot, N Katz, F Loeser), de Gruyter (2004) 677 | DOI

[20] E Getzler, Cartan homotopy formulas and the Gauss–Manin connection in cyclic homology, from: "Quantum deformations of algebras and their representations" (editors A Joseph, S Shnider), Israel Math. Conf. Proc. 7, Bar-Ilan Univ. (1993) 65

[21] T G Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985) 187 | DOI

[22] T G Goodwillie, Relative algebraic K–theory and cyclic homology, Ann. of Math. 124 (1986) 347 | DOI

[23] L Hesselholt, On the p–typical curves in Quillen’s K–theory, Acta Math. 177 (1996) 1 | DOI

[24] L Hesselholt, Topological Hochschild homology and the Hasse–Weil zeta function, from: "An alpine bouquet of algebraic topology" (editors C Ausoni, K Hess, B Johnson, I Moerdijk, J Scherer), Contemp. Math. 708, Amer. Math. Soc. (2018) 157 | DOI

[25] L Hesselholt, I Madsen, On the K–theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997) 29 | DOI

[26] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149 | DOI

[27] M Hoyois, The homotopy fixed points of the circle action on Hochschild homology, preprint (2015)

[28] M Hoyois, S Scherotzke, N Sibilla, Higher traces, noncommutative motives, and the categorified Chern character, Adv. Math. 309 (2017) 97 | DOI

[29] L Illusie, Complexe cotangent et déformations, I, 239, Springer (1971) | DOI

[30] L Illusie, Réduction semi-stable et décomposition de complexes de de Rham à coefficients, Duke Math. J. 60 (1990) 139 | DOI

[31] D Kaledin, Non-commutative Hodge-to-de Rham degeneration via the method of Deligne–Illusie, Pure Appl. Math. Q. 4 (2008) 785 | DOI

[32] D Kaledin, Spectral sequences for cyclic homology, from: "Algebra, geometry, and physics in the 21st century" (editors D Auroux, L Katzarkov, T Pantev, Y Soibelman, Y Tschinkel), Progr. Math. 324, Birkhäuser (2017) 99 | DOI

[33] M Kontsevich, Y Soibelman, Notes on A∞–algebras, A∞–categories and non-commutative geometry, from: "Homological mirror symmetry" (editors A Kapustin, M Kreuzer, K G Schlesinger), Lecture Notes in Phys. 757, Springer (2009) 153

[34] J Lurie, Spectral algebraic geometry, preprint (2016)

[35] J Lurie, Higher algebra, preprint (2017)

[36] M A Mandell, J P May, Equivariant orthogonal spectra and S–modules, 755, Amer. Math. Soc. (2002) | DOI

[37] A Mathew, Residue fields for a class of rational E∞–rings and applications, J. Pure Appl. Algebra 221 (2017) 707 | DOI

[38] A Mathew, N Naumann, J Noel, Nilpotence and descent in equivariant stable homotopy theory, Adv. Math. 305 (2017) 994 | DOI

[39] J Mcclure, R Schwänzl, R Vogt, THH(R)≅R ⊗ S1 for E∞ ring spectra, J. Pure Appl. Algebra 121 (1997) 137 | DOI

[40] T Nikolaus, P Scholze, On topological cyclic homology, Acta Math. 221 (2018) 203 | DOI

[41] A Petrov, D Vaintrob, V Vologodsky, The Gauss–Manin connection on the periodic cyclic homology, Selecta Math. 24 (2018) 531 | DOI

[42] D Shklyarov, On Serre duality for compact homologically smooth DG algebras, preprint (2007)

[43] G Tabuada, Homotopy theory of spectral categories, Adv. Math. 221 (2009) 1122 | DOI

[44] G Tabuada, Noncommutative motives, 63, Amer. Math. Soc. (2015) | DOI

[45] B Toën, Anneaux de définition des dg-algèbres propres et lisses, Bull. Lond. Math. Soc. 40 (2008) 642 | DOI