Building knowledge bases of fuzzy controllers: the superiority of intelligent technologies based on soft computing for modeling control of unstable dynamic systems
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 19 (2024) no. 1, pp. 5-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the results of a study of the use of two industrial software products for building knowledge bases of fuzzy controllers for controlling unstable nonlinear dynamic objects: based on ANFIS (built-in Matlab module) and AFM with tools $SCOptKB^{TM}$ - knowledge base optimizer based on soft computing technologies, and $QCOptKB^{TM}$ - knowledge base optimizer based on quantum computing. The results of a comparative analysis of the quality of knowledge bases built using these tools for intelligent control systems are considered. The comparison is realized by modeling intelligent control of typical nonlinear dynamic systems with local, global and partial (in terms of variables) instability characteristic of robotic systems. An effective approach to the design of knowledge bases based on soft computing technology is considered using a number of important thermodynamic and information-entropy control criteria that increase the objectivity of the information contained in the database about the dynamic behavior of the control object.
Keywords: intelligent control systems, robustness, soft computing, knowledge base.
@article{FSSC_2024_19_1_a0,
     author = {P. V. Zrelov and D. P. Zrelova and O. Yu. Tyatyushkina and S. V. Ul'yanov},
     title = {Building knowledge bases of fuzzy controllers: the superiority of intelligent technologies based on soft computing for modeling control of unstable dynamic systems},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {5--46},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2024_19_1_a0/}
}
TY  - JOUR
AU  - P. V. Zrelov
AU  - D. P. Zrelova
AU  - O. Yu. Tyatyushkina
AU  - S. V. Ul'yanov
TI  - Building knowledge bases of fuzzy controllers: the superiority of intelligent technologies based on soft computing for modeling control of unstable dynamic systems
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2024
SP  - 5
EP  - 46
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2024_19_1_a0/
LA  - ru
ID  - FSSC_2024_19_1_a0
ER  - 
%0 Journal Article
%A P. V. Zrelov
%A D. P. Zrelova
%A O. Yu. Tyatyushkina
%A S. V. Ul'yanov
%T Building knowledge bases of fuzzy controllers: the superiority of intelligent technologies based on soft computing for modeling control of unstable dynamic systems
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2024
%P 5-46
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2024_19_1_a0/
%G ru
%F FSSC_2024_19_1_a0
P. V. Zrelov; D. P. Zrelova; O. Yu. Tyatyushkina; S. V. Ul'yanov. Building knowledge bases of fuzzy controllers: the superiority of intelligent technologies based on soft computing for modeling control of unstable dynamic systems. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 19 (2024) no. 1, pp. 5-46. http://geodesic.mathdoc.fr/item/FSSC_2024_19_1_a0/

[1] Litvintseva L. V., Takahashi K., Ulyanov S. V., Intelligent robust control design based on new types of computation, Note del Polo Ricerca, University degli Studi di Milano (Polo Didattico e di Ricerca di Crema) Publ., 2004

[2] Panfilov S. A., Litvintseva L. V., Ulyanov S., Takahashi K., Yazenin A. V., Hagiwara T., “Soft computing optimizer for intelligent control systems design: the structure and applications”, Journal of Systemics, Cybernetics and Informatics, 1:5 (2003)

[3] Ulyanov V. S., Panfilov S. A., Ulyanov S. V., Litvintceva L. V., Kurawaki I., Tanaka K., “Principle of minimum entropy production on applied soft computing for advanced intelligent robotics and mechatronics”, Soft Computing, 2000, no. 4, 141–146 | DOI

[4] Jang J. S., “ANFIS: Adaptive-Network-Based Fuzzy Inference System”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1993

[5] Vasilev S. N., Zherlov A. K., Fedosov E. A., Fedunov B. E., Intelligent control of dynamic systems, Fizmatgiz, Moscow, 2000, 352 pp. (in Russian)

[6] Dobrynin V. N., Reshetnikov G. P., Sakharov Yu. S., Ulyanov S. V., “Quantum and soft computing technologies in the design of intelligent control systems”, System analysis in science and education, 2010, no. 2 (in Russian)

[7] Kuravaki I., Litvintseva L. V., Panfilov S. A., Rizzotto G. G., Takakhashi K., Ulyanov I. S., Khagivara T., Yazenin A. V., “Building robust knowledge bases of fuzzy controllers for intelligent control of substantially nonlinear dynamic systems”, Journal of Computer and Systems Sciences International, 43:4 (2004), 615–632

[8] Litvintseva L. V., Tyatyushkina O. Yu., Grigorev P. N., Ulyanov S. V., “Knowledge base optimizer based on soft computing”, System analysis in science and education, 2010, no. 2 (in Russian)

[9] Litvintseva L. V., Ulyanov S. V., Ulyanov S. S., “Design of robust knowledge bases of fuzzy controllers for intelligent control of substantially nonlinear dynamic systems: II. A soft computing optimizer and robustness of intelligent control systems”, Journal of Computer and Systems Sciences International, 45:5 (2006), 744–771 | DOI

[10] Petrov B. N., Ulanov G. M., Goldenblat I. I., Ulyanov S. V., Model theory in Management Processes: Information and thermodynamic aspects, Nauka Publ., Moscow, 1978, 224 pp. (in Russian)

[11] Ulyanov S. V., Dobrynin V. N., Nefyodov N. Yu., Petrov S. P., Polunin A. S., Reshetnikov A. G., “Genetic and quantum algorithms. Part I: Innovative models in education”, System analysis in science and education, 2010, no. 3, 226–253 (in Russian)

[12] Ulyanov S. V., Litvintseva L. V., Dobrynin V. N., Mishin A. A., Intelligent Robust Control: Soft Computing Technologies, VNIIgeosistem Publ., Moscow, 2011, 406 pp. (in Russian)