Information-thermodynamic uncertainty in intelligent self-organized fuzzy control systems and extractable work for thermodynamic control force from hidden quantum information
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 18 (2023) no. 2.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quantum self-organization algorithm model of wise knowledge base design for intelligent fuzzy controllers with required robust level from information-thermodynamic viewpoint considered. Background of the model is a new model of quantum inference based on quantum genetic algorithm and design optimal structure of quantum neural network. Quantum deep machine learning toolkit applied developed platform titled as «Quantum Computing Optimizer of Knowledge Base» ($QCOptKB^{TM}$). Quantum algorithm applied on line for the quantum correlation’s type searching between unknown solutions in quantum superposition of imperfect knowledge bases of intelligent controllers designed on soft computing ($SCOptKB^{TM}$ toolkit). Disturbance conditions of analytical information-thermodynamic trade-off interrelations between main control quality measures (stability, controllability and robustness) as new control design laws discussed. The smart control design with guaranteed achievement of these trade-off interrelations is the main goal for quantum self-organization algorithm of imperfect KB. Sophisticated synergetic quantum information effect introduced: a new robust smart knowledge base can be created on line from responses on unpredicted control situations of any imperfect KB applying quantum hidden information extracted from quantum correlation. Moreover, the new force control law from quantum thermodynamic described: with extracted hidden quantum information from classical control signal states (on micro-level) possible to design in on-line new control force that can produce on macro-level more value work amount than the work losses on the extraction of this amount of hidden quantum information. Within the toolkit of classical intelligent control based on soft computing the achievement of the similar synergetic information effect is impossible. Benchmarks of intelligent cognitive robotic control applications considered.
Keywords: intelligent self-organized control systems, information-thermodynamic uncertainty, extractable work, thermodynamic force control, quantum hidden information.
@article{FSSC_2023_18_2_a0,
     author = {S. V. Ul'yanov and D. P. Zrelova and A. A. Shevchenko(Mamaeva) and A. V. Schevchenko},
     title = {Information-thermodynamic uncertainty in intelligent self-organized fuzzy control systems and extractable work for thermodynamic control force from hidden quantum information},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2023_18_2_a0/}
}
TY  - JOUR
AU  - S. V. Ul'yanov
AU  - D. P. Zrelova
AU  - A. A. Shevchenko(Mamaeva)
AU  - A. V. Schevchenko
TI  - Information-thermodynamic uncertainty in intelligent self-organized fuzzy control systems and extractable work for thermodynamic control force from hidden quantum information
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2023
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2023_18_2_a0/
LA  - ru
ID  - FSSC_2023_18_2_a0
ER  - 
%0 Journal Article
%A S. V. Ul'yanov
%A D. P. Zrelova
%A A. A. Shevchenko(Mamaeva)
%A A. V. Schevchenko
%T Information-thermodynamic uncertainty in intelligent self-organized fuzzy control systems and extractable work for thermodynamic control force from hidden quantum information
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2023
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2023_18_2_a0/
%G ru
%F FSSC_2023_18_2_a0
S. V. Ul'yanov; D. P. Zrelova; A. A. Shevchenko(Mamaeva); A. V. Schevchenko. Information-thermodynamic uncertainty in intelligent self-organized fuzzy control systems and extractable work for thermodynamic control force from hidden quantum information. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 18 (2023) no. 2. http://geodesic.mathdoc.fr/item/FSSC_2023_18_2_a0/

[1] Litvintseva L. V., Ulyanov S. V., “Quantum fuzzy inference for knowledge base design in robust intelligent controllers”, Journal of Computer and Systems Sciences International, 46:6 (2007), 908–961 | DOI | Zbl

[2] Litvintseva L. V., Ulyanov S. V., “Intelligent Control Systems. I. Quantum Computing and Self-Organization Algorithm”, Journal of Computer and Systems Sciences International, 49:6 (2009), 946–984 | DOI

[3] Barchatova I. A., Ulyanov S. V., Albu V. A., “Intelligent Robust Control System Based on Quantum KB-Self-organization: Quantum Soft Computing and Kansei/Affective Engineering Technologies”, Intelligent Systems'2014, Advances in Intelligent Systems and Computing, eds. D. Filev, et al, Springer, Cham, 2015, 37–48 | DOI

[4] Ulyanov S. V., “Intelligent self-organized robust control design based on quantum/soft computing technologies and Kansei Engineering”, Computer Science Journal of Moldova, 21:2(62) (2013), 242–279

[5] Ulyanov S. V., Self-organizing quantum robust control methods and systems for situations with uncertainty and risk, Patent US 8788450 B2, 2014

[6] Ulyanov S. V., Self-organized robust intelligent control, Lambert Academic Publishing; OmniScriptum Publishing Group, 2014, 412 pp.

[7] Ulyanov S. V., Quantum relativistic informatics, Lambert Academic Publishing; OmniScriptum Publishing Group, 2015

[8] Goold J., Huber M., Riera A., Rio L., Skrzypczyk P., “The role of quantum information in thermodynamics—a topical review”, Journal of Physics A: Mathematical and Theoretical, 49 (2016), 143001 | DOI | MR | Zbl

[9] Deffner S., Campbell S., Quantum Thermodynamics: An introduction to the thermodynamics of quantum information, 2019 | DOI | Zbl

[10] Ahmadi B., Salimi S., Khorashad A. S., Kheirandish F., “The quantum thermodynamic force responsible for quantum state transformation and the flow and backflow of information”, Scientific Reports, 9 (2019), 8746 | DOI | MR

[11] Ahmadi B., Salimi S., Khorashad A. S., “Irreversible work and Maxwell demon in terms of quantum thermodynamic force”, Scientific Reports, 11 (2021), 2301 | DOI

[12] Zhang K., Wang X., Zeng Q., Wang J., Conditional entropy production and quantum fluctuation theorem of dissipative information: Theory and experiments, 2022 | DOI

[13] Nakamura T., Hasegawa H. H., Driebe D. J., “Reconsideration of the generalized second law based on information geometry”, Journal of Physics Communications, 3:1 (2019), 015015 | DOI

[14] Van der.Meer.R., Ng N. H. Y., Wehner S., “Smoothed generalized free energies for thermodynamics”, Physical Review A, 96:6 (2017), 062135 | DOI

[15] Özdemir A. T., Müstecaplioǧlu , “Quantum thermodynamics and quantum coherence engines”, Turkish Journal of Physics, 44:5 (2020), 404–436 | DOI

[16] Korenkov V. V., Ulyanov S. V., Shevchenko A. A., Shevchenko A. V., Intelligent cognitive robotic: Quantum cognitive computing technologies, Kurs, Moscow, 2021

[17] Parrondo J. M. R., Horowitz J. M., Sagawa T., “Thermodynamics of information”, Nature Physics, 11 (2015), 131–139 | DOI

[18] Ren L-H., Fab H., “Second law of thermodynamics with quantum memory”, The Physical Review, A96:4 (2017), 042304 | DOI

[19] Xu R., “Reinforcement learning approach to shortcuts between thermodynamic states with minimum entropy production”, The Physical Review, E105 (2022), 054123 | MR

[20] Boyd A. B., Patra A., Jarzynski C., Crutchfield J. P., “Shortcuts to Thermodynamic Computing: The Cost of Fast and Faithful Information Processing”, Journal of Statistical Physics, 187:17 (2022) | DOI | MR | Zbl

[21] Pancotti N., Scandi M., Mitchison M. T., Perarnau-Llobet M., “Speed-Ups to Isothermality: Enhanced Quantum Thermal Machines through Control of the System-Bath Coupling”, Physical Review X, 10:3 (2020), 031015 | DOI

[22] van der.Schaft.A. J., Theory of port-Hamiltonian systems (Lectures 1, 2, and 3). Network Modeling and Control of Physical Systems, DISC, 2005 | MR

[23] van der.Schaft.A., Jeltsema D., “Port-Hamiltonian Systems Theory: An Introductory Overview”, Foundations and Trends in Systems and Control, 1:2-3 (2014), 173–378 | DOI | Zbl

[24] Moxley F., Quantum Port-Hamiltonian Network Theory: Universal Quantum Simulation with RLC Circuits, Dartmouth College, Dartmouth Digital Commons. Hanover, NH 03755 USA, 2020

[25] Mehdi S., Tiwary P., Thermodynamics of Interpretation, 2022 | DOI

[26] Boyd A. B., Crutchfield J. P., Gu M., Thermodynamic Machine Learning through Maximum Work Production, 2021 | DOI | MR

[27] Friston K. J., Da Costa.L., Parr T., “Some Interesting Observations on the Free Energy Principle”, Entropy, 23:8 (2021), 1076 | DOI | MR

[28] Fields C., Friston K., Glazebrook J. F., Levin M., A free energy principle for generic quantum systems, 2021 | DOI | Zbl

[29] Friston K., Costa L., Sajid N., Heins C., Ueltzhöffer K., Pavliotis G. A., Parr T., The free energy principle made simpler but not too simple, 2021 | DOI | MR

[30] Sakthivadivel D. A., Towards a Geometry and Analysis for Bayesian Mechanics, 2022 | DOI

[31] Pyhäranta , Alipour S., Rezakhani A. T., Ala-Nissila T., “Correlation-enabled energy exchange in quantum systems without external driving”, Physical Review A, 105:2 (2022), 022204 | DOI | MR

[32] Ahmadi B., Salimi S., Khorashad A. S., Refined Definitions of Heat and Work in Quantum Thermodynamics, 2023 | DOI

[33] Binder F. C., Vinjanampathy S., Modi K., Goold J., Quantum thermodynamics of general quantum processes, 2015 | DOI | MR

[34] Strasberg Ph., Winter A., “First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy”, PRX Quantum, 2:3 (2021), 030202 | DOI

[35] Dou W., Ochoa M. A., Nitzan A., Subotnik J. E., “Universal approach to quantum thermodynamics in the strong coupling regime”, Physical Review B, 98:13 (2018), 134306 | DOI

[36] Ulyanov S. V., “Quantum Algorithm of Imperfect KB Self-organization. Part I: Smart Control-Information-Thermodynamic Bounds”, Artificial Intelligence Advances, 3:2 (2021), 13–36 | DOI

[37] Wilde M. M., From Classical to Quantum Shannon Theory, Cambridge University Press, 2021 | MR

[38] Su S., Chen J., Ma Y., Chen J., Sun C., “The heat and work of quantum thermodynamic processes with quantum coherence”, Chinese Physics B, 27:6 (2018), 060502 | DOI

[39] Alipour S., Chenu A., Rezakhani A. T., Campo A., “Shortcuts to Adiabaticity in Driven Open Quantum Systems: Balanced Gain and Loss and Non-Markovian Evolution”, Quantum, 4 (2020), 336 | DOI

[40] Alipour S., Rezakhani A. T., Chenu A., Campo A., Ala-Nissila T., Entropy-Based Formulation of Thermodynamics in Arbitrary Quantum Evolution, 2021 | DOI | MR

[41] Alipour S., F. Benatti., Afsary M., Bakhshinezhad F., Ramezani M., Ala-Nissila T., Rezakhani A. T., Temperature in Nonequilibrium Quantum Systems, 2021 | DOI

[42] Landi G., Paternostro M., “Irreversible entropy production: From classical to quantum”, Reviews of Modern Physics, 93:4 (2021), 035008 | DOI | MR

[43] Huang R. C., Riechers P. M., Gu M., Narasimhachar V., Engines for predictive work extraction from memoryful quantum stochastic processes, 2022 | DOI

[44] Ulyanov S. V., Intelligent cognitive robotics. Vol. 2: Quantum self-organization of imperfect knowledge bases: quantum intelligent force control and information-thermodynamic law of extracted informed useful work, Kurs, M., 2022