Entropy based multi-objective crop production problem under fuzzy environment
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 18 (2023) no. 1, pp. 128-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multi-objective non-linear programming refers to a branch of mathematical programming that involves the optimization of multiple objective functions simultaneously. In reality, many programming problems encompass multiple objectives. However, thus far, we have focused on the objective that decision makers deemed to be the most optimal. In this article, we investigate the multi-objective crop planning problem within a fuzzy environment, utilizing Shannon's measure of entropy as the objective function. The aforementioned issue is transformed into a mathematical formulation, wherein the imprecise data is represented by the $\lambda$-integral value of fuzzy numbers. We address this issue through the application of a fuzzy mathematical programming approach. Numerical examples have been presented to demonstrate the solution methodology for the given problem.
Keywords: crop production, uncertainty, entropy optimization, fuzzy programming.
@article{FSSC_2023_18_1_a5,
     author = {B. Samanta},
     title = {Entropy based multi-objective crop production problem under fuzzy environment},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {128--143},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2023_18_1_a5/}
}
TY  - JOUR
AU  - B. Samanta
TI  - Entropy based multi-objective crop production problem under fuzzy environment
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2023
SP  - 128
EP  - 143
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2023_18_1_a5/
LA  - en
ID  - FSSC_2023_18_1_a5
ER  - 
%0 Journal Article
%A B. Samanta
%T Entropy based multi-objective crop production problem under fuzzy environment
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2023
%P 128-143
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2023_18_1_a5/
%G en
%F FSSC_2023_18_1_a5
B. Samanta. Entropy based multi-objective crop production problem under fuzzy environment. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 18 (2023) no. 1, pp. 128-143. http://geodesic.mathdoc.fr/item/FSSC_2023_18_1_a5/

[1] Beightler C. S., Philips D. T., Applied Geometric Programming, John Wiley and Sons, 1976 | MR | Zbl

[2] Bellman R., Zadeh L., “Decision-making in a fuzzy environment”, Management Science, 17:4 (1970), 141–164 | DOI | MR

[3] Biswas A., Pal B. B., “Application of fuzzy goal programming technique to land use planning in agricultural system”, Omega, 33:5 (2005), 391–398 | DOI

[4] Duffin R. J., Prterson E. L., Zener C., Geometric Programming - Theory and Application, John Wiley and Sons, New York, 1967 | MR | Zbl

[5] Itoh T., Ishii H., Nanseki T., “A model of crop planning under uncertainty in agriculture management”, International Journal of Production Economics, 81-82 (2003), 555–558 | DOI

[6] Jaynes E. T., “Information theory and statistical mechanics”, The Physical Review, 108 (1957), 171–190 | DOI | MR | Zbl

[7] Kapur J.N., Maximum-Entropy Models in Science and Engineering, Wiley Eastern Limited, New Delhi, 1993 | MR

[8] Kapur J. N., Kesavan H. K., Entropy Optimization Principles with Applications, Academic Press, Inc., San Diego, 1992 | MR

[9] Kaufmann A., Gupta M. M., Fuzzy mathematical models in engineering and management science, North-Holland, 1988 | MR | Zbl

[10] Kumari P. L., Reddy G. K., Krishna T. G., “Optimum Allocation of Agricultural Land to the Vegetable Crops under Uncertain Profits using Fuzzy Multiobjective Linear Programming”, IOSR Journal of Agriculture and Veterinary Science, 7:12 (2014), 19–28 | DOI

[11] Lodwick W., Jamison D., Russell S., “A comparison of fuzzy stochastic and deterministic methods in Linear Programming”, Proceeding of IEEE, 2000, 321–325

[12] Mohamad N. H., Said F., “A mathematical programming approach to crop mix problem”, African Journal of Agricultural Research, 6:1 (2011), 191–197

[13] Ion R., Rahoveanu A. T., “Linear Programming in Agriculture: Case Study in Region of Development South-Mountenia”, International Journal of Sustainable Economies Management, 1:1 (2012), 51–60 | DOI | MR

[14] Sarker R. A., Talukdar S., Haque A. F. M. A., “Determination of optimum crop mix for crop cultivation in Bangladesh”, Applied Mathematical Modeling, 21:10 (1997), 621–632 | DOI | MR | Zbl

[15] Samanta B., Roy T. K., “Multi-Objective Portfolio Optimization Model”, Tamsui Oxford Journal of Mathematical sciences, 21:1 (2005), 55–70 | MR | Zbl

[16] Samanta B., Majumder S. K., “Entropy based Transportation model use Geometric Programming method”, Journal of Applied mathematics and Computation, 179 (2006), 431–439 | DOI | MR | Zbl

[17] Samanta B., “Entropy based multi-objective Matrix game model with Fuzzy goals”, Tamsui Oxford journal of Information and Mathematical Science, 31:2 (2017), 82–92 | MR

[18] Sher I., Amir I., “Optimization with fuzzy constraints in Agriculture production planning”, Agricultural Systems, 45 (1994), 421–441 | DOI

[19] Sinha S. B., Rao K. A., Mangaraj B. K., “Fuzzy goal programming in multicriteria decision systems – A Case study in agriculture planning”, Socio-Economic Planning Sciences, 22:2 (1988), 93–101 | DOI

[20] Slowinski R., “A multicriteria fuzzy linear programming method for water supply system development planning”, Fuzzy Sets and Systems, 19 (1986), 217–237 | DOI | MR | Zbl

[21] Sumpsi J. M., Amador F., Romero C., “On Farmer's Objectives: A multi criteria approach”, European Journal of Operation Research, 96 (1996), 64–71 | DOI

[22] Tanaka H., Okuda T., Asai K., “On fuzzy mathematical programming”, Journal of Cybernetics, 3:4 (1974), 37–46 | DOI | MR

[23] Toyonaga T., Itoh T., Ishii H., “A crop planning problem with fuzzy random profit coefficients”, Fuzzy Optimization and decision making, 4 (2005), 51–59 | DOI | MR

[24] Tsao H. S. J., Fang S. C., “Linear Programming with inequality constraints via entropic perturbation”, International Journal of Mathematics and Mathematical Sciences, 19:1 (1996), 177–184 | DOI | MR | Zbl

[25] Vasant P. M., “Application of fuzzy linear programming in production planning”, Fuzzy Optimization and decision making, 3 (2003), 229–241 | DOI | MR | Zbl

[26] Wilson A. G., Entropy in Urban and Regional Modelling, Pion, London, 1970

[27] Zadeh L. A., “Fuzzy sets”, Information and Control, 8:3 (1965), 338–353 | DOI | MR | Zbl

[28] Zimmermann H. J., “Fuzzy programming and linear programming with several objective functions”, Fuzzy Sets and Systems, 1 (1978), 45–55 | DOI | MR | Zbl