Cognitive robust control system based on quantum fuzzy inference algorithm in unconventional intelligent robotics
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 18 (2023) no. 1, pp. 28-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

Strategy of intelligent cognitive control systems based on quantum and soft computing described. Quantum self-organization knowledge base synergetic effect extracted from intelligent fuzzy controller's imperfect knowledge bases demonstrated. That technology improved of robustness of intelligent cognitive control systems in hazard control situations described with the cognitive neuro-interface and different types of robot cooperation. Examples demonstrated the introduction of quantum fuzzy inference gate design as prepared programmable algorithmic solution for board embedded control systems. The possibility of neuro-interface application based on cognitive helmet with quantum fuzzy controller for driving of the vehicle is shown.
Keywords: quantum fuzzy inference, fuzzy logic, cognitive control system, information-thermodynamic law.
@article{FSSC_2023_18_1_a1,
     author = {A. A. Shevchenko(Mamaeva) and A. V. Schevchenko and S. V. Ul'yanov and D. P. Zrelova},
     title = {Cognitive robust control system based on quantum fuzzy inference algorithm in unconventional intelligent robotics},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {28--46},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2023_18_1_a1/}
}
TY  - JOUR
AU  - A. A. Shevchenko(Mamaeva)
AU  - A. V. Schevchenko
AU  - S. V. Ul'yanov
AU  - D. P. Zrelova
TI  - Cognitive robust control system based on quantum fuzzy inference algorithm in unconventional intelligent robotics
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2023
SP  - 28
EP  - 46
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2023_18_1_a1/
LA  - en
ID  - FSSC_2023_18_1_a1
ER  - 
%0 Journal Article
%A A. A. Shevchenko(Mamaeva)
%A A. V. Schevchenko
%A S. V. Ul'yanov
%A D. P. Zrelova
%T Cognitive robust control system based on quantum fuzzy inference algorithm in unconventional intelligent robotics
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2023
%P 28-46
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2023_18_1_a1/
%G en
%F FSSC_2023_18_1_a1
A. A. Shevchenko(Mamaeva); A. V. Schevchenko; S. V. Ul'yanov; D. P. Zrelova. Cognitive robust control system based on quantum fuzzy inference algorithm in unconventional intelligent robotics. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 18 (2023) no. 1, pp. 28-46. http://geodesic.mathdoc.fr/item/FSSC_2023_18_1_a1/

[1] Litvintseva L. V., Ulyanov S. V., Ulyanov S. S., “Design of robust knowledge bases of fuzzy controllers for intelligent control of substantially nonlinear dynamic systems: II A soft computing optimizer and robustness of intelligent control systems”, Journal of Computer and Systems Sciences International, 45:5 (2006), 744–771 | DOI | MR | Zbl

[2] Litvintseva L. V., Takahashi K., Ulyanov S. V., Intelligent robust control design based on new types of computation, Note del Polo Ricerca, University degli Studi di Milano (Polo Didattico e di Ricerca di Crema) Publ., 2004

[3] Ulyanov S. V., Reshetnikov A. G., Kerimov T. A., “Intelligent Robust Robotic Controllers: SW and HW Toolkit of Applied Quantum Soft Computing”, Computer Science Journal of Moldova, 21:3(63) (2013)

[4] Ulyanov S. V., System and method for control using quantum soft computing, US Patent No 6,578,018B1, US Patent No 7,383,235 B1, 2003; EP PCT 1 083 520 A2, 2001

[5] Litvintseva L. V., Ulyanov S. V., “Quantum fuzzy inference for knowledge base design in robust intelligent controllers”, Journal of Computer and Systems Sciences International, 46:6 (2007), 908–961 | DOI | Zbl

[6] Ulyanov S. V., Information Design Technology of Robust Integrated Fuzzy Intelligent Control Systems based on Unconventional Computational Intelligence: Quantum Control Algorithm of Robust KB Self-Organization, 2012 http://qcoptimizer.com/technology/Technology.pdf

[7] Ulyanov S. V., “Self-Organization of robust intelligent controller using quantum fuzzy inference”, 2008 3rd International Conference on Intelligent System and Knowledge Engineering, 2008, 726–732 | DOI

[8] Litvintseva L. V., Ulyanov S. V., Quantum information and quantum computational intelligence: Quantum optimal control and filtering of stability, robustness, and self-organization models in nanotechnologies, Note del Polo Ricerca, University degli Studi di Milano (Polo Didattico e di Ricerca di Crema) Publ, 2005, 2007

[9] Nielsen M. A., Chuang L., Quantum computation and quantum information, Cambridge Univ. Press, UK, 2000 | MR | Zbl

[10] Ulyanov S., Albu V., Barchatova I., Quantum Algorithmic Gates: Information Analysis and Design System in MatLab, Lambert Academic Publishing, Saarbrucken, 2014

[11] Ulyanov S., Albu V., Barchatova I., Design IT of Quantum Algorithmic Gates: Quantum search algorithm simulation in MatLab, Lambert Academic Publishing, Saarbrucken, 2014

[12] Ulyanov S. V., “Quantum Algorithm of Imperfect KB Self-organization. Part I: Smart Control-Information-Thermodynamic Bounds”, Artificial Intelligence Advances, 3:2 (2021), 13–36 | DOI

[13] Ulyanov S. V., Intelligent cognitive robotics. Vol. 2: Quantum self-organization of imperfect knowledge bases: quantum intelligent force control and information-thermodynamic law of extracted informed useful work, Kurs, M., 2022

[14] Korenkov V. V., Ulyanov S. V., Shevchenko A. A., Shevchenko A. V., Tekhnologii kvantovykh vychislenij, Kurs, Moscow, 2022 (in Russian)

[15] Ulyanov S. V., “Self-organization of robust intelligent controller using quantum fuzzy inference”, Proc. of IEEE International Conference ISKE'2008, 2008, 726–732

[16] DiVincenzo D. P., Horodecki M., Leung D. W., Smolin J. A., Terhal B. M., “Locking classical correlation in quantum states”, Physical Review Letters, 92:6 (2004) | DOI

[17] Ulyanov S., Albu V., Reshetnikov A., Quantum Optimizer of Knowledge Base. Intelligent self-organized robust embedded controllers and control systems, Lambert Academic Publishing, Saarbrucken, 2014

[18] Ulyanov S. V., Takahashi K., Litvintseva L. V., Hagiwara T., “Design of self-organized intelligent control systems based on quantum fuzzy inference: Intelligent system of systems engineering approach”, Proc. of IEEE International Conference SMC (Hawaii, USA), 2005, 3835–3840

[19] Lee P. L., Chang H. C., Hsieh T. Y., “A brain-wave-actuated small robot car using ensemble empirical mode decomposition-based approach”, IEEE Trans. on Systems, Man, and Cybernetics, 2012, 1053–1064 | DOI

[20] Charaboti T., Alternative modes interaction in proximal human-in-the-loop operation of robots, arXiv:1703.08930v1 [cs.RO], 2017

[21] Kane M. J., Working Memory, Attention Control, and the N-Back Task: A Question of Construct Validity, University of North Carolina at Greensboro, 2014

[22] Ulyanov S., Albu V., Reshetnikov A., Quantum Optimizer of Knowledge Base. Intelligent self-organized robust embedded controllers and control systems, Lambert Academic Publishing, Saarbrucken, 2014

[23] Ulyanov S., Reshetnikov A. G., Nikolaeva A. V., Intelligent Control System in Unforeseen Control Situation: Soft Computing Optimizer, Lambert Academic Publishing, Saarbrucken, 2013

[24] Ulyanov S. V., “Quantum soft computing in control processes design: Quantum genetic algorithms and quantum neural network approaches”, Proceedings of 5th Intern. Symp. on Soft Computing for Industry (Seville, Spain), 2004, 99–104 | Zbl

[25] Noor A. K., “Potential of cognitive computing and cognitive systems”, Open Engineering, 5:1 (2015), 75–88

[26] Ulyanov S. V., Mamaeva A. A., Shevchenko A. V., “The cognitive technology of intelligent control: soft computing optimizer and deep machine learning”, Fuzzy Systems and Soft Computing, 13:2 (2018), 166–182 (in Russian) | DOI