Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FSSC_2023_18_1_a0, author = {A. G. Bronevich and I. N. Rozenberg}, title = {Decision making based on imprecise probabilities and aggregation of information sources}, journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a}, pages = {5--27}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FSSC_2023_18_1_a0/} }
TY - JOUR AU - A. G. Bronevich AU - I. N. Rozenberg TI - Decision making based on imprecise probabilities and aggregation of information sources JO - Nečetkie sistemy i mâgkie vyčisleniâ PY - 2023 SP - 5 EP - 27 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FSSC_2023_18_1_a0/ LA - ru ID - FSSC_2023_18_1_a0 ER -
%0 Journal Article %A A. G. Bronevich %A I. N. Rozenberg %T Decision making based on imprecise probabilities and aggregation of information sources %J Nečetkie sistemy i mâgkie vyčisleniâ %D 2023 %P 5-27 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FSSC_2023_18_1_a0/ %G ru %F FSSC_2023_18_1_a0
A. G. Bronevich; I. N. Rozenberg. Decision making based on imprecise probabilities and aggregation of information sources. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 18 (2023) no. 1, pp. 5-27. http://geodesic.mathdoc.fr/item/FSSC_2023_18_1_a0/
[1] Von Neuman.J., Morgenstern O., Theory of games and economic behavior, Princeton university press, Princeton, NJ, 1944 | MR | Zbl
[2] Kuznetsov V. P., Interval statistical models, Radio i Svyaz Publ., Moscow, 1991 (in Russian) | MR
[3] Utkin L. V., Risk analysis and decision making with incomplete information, Nauka Publ., SPb., 2007, 404 pp. (in Russian)
[4] Walley P., Statistical reasoning with imprecise probabilities, Chapman and Hall, London, 1991 | MR | Zbl
[5] Augustin T., Coolen F. P. A., G. de.Cooman., Troffaes M. C. M., Introduction to imprecise probabilities, Wiley, New York, 2014 | MR | Zbl
[6] Dempster A. P., “Upper and lower probabilities induced by multivalued mapping”, Annals of Mathematical Statistics, 38:2 (1967), 325–339 | DOI | MR | Zbl
[7] Shafer G., A Mathematical Theory of Evidence, Princeton University Press, Princeton, NJ, 1976, 314 pp. | MR | Zbl
[8] Dubois D., Prade H., Theorie des Possibilites, Application a la Representation des Connaissances en Informatique, Masson, Paris, 1988 | MR
[9] Bronevich A., Rozenberg I., “The contradiction between belief functions: Its description, measurement, and correction based on generalized credal sets”, International Journal of Approximate Reasoning, 112 (2019), 119–139 | DOI | MR | Zbl
[10] Bronevich A. G., Rozenberg I. N., “Modelling uncertainty with generalized credal sets: application to conjunction and decision”, International Journal of General Systems, 27:1 (2018), 67–96 | DOI | MR
[11] Bronevich A. G., Rozenberg I. N., “Conditioning of imprecise probabilities based on generalized credal sets”, Symbolic and Quantitative Approaches to Reasoning with Uncertainty, v. 374, eds. G. Kern-Isberner, Z. Ognjanović, Springer Nature Switzerland AG, Cham, 2019, 384 | MR
[12] Ellsberg D., “Risk, ambiguity and the Savage axioms”, The Quarterly Journal of Economics, 75 (1961), 643–669 | DOI | MR | Zbl
[13] Bronevich A. G., Karkishchenko A. N., “Description of fuzzy measures in the framework of the probabilistic approach”, Fuzzy Systems and Soft Computing, 2:7 (2007), 7–30 (in Russian) | Zbl
[14] Bronevich A. G., Rozenberg I. N., “Description of fuzzy measures in the framework of the probabilistic approach”, Conditional fuzzy measures, functional mappings, fuzzy quantities in the framework of the probabilistic approach, 7:1 (2012), 5–22 (in Russian) | Zbl
[15] Denneberg D., Non-additive measure and integral, Kluwer Academic Publishers, Dordrecht, 1997 | MR
[16] Smets Ph., “Decision making in TBM: the necessity of the pignistic transformation”, International Journal of Approximate Reasoning, 38 (2005), 133–147 | DOI | MR | Zbl
[17] Dubois D., Prade H., “Representation and combination of uncertainty with belief functions and possibility measures”, Computational Intelligence, 4:3 (1988), 244–264 | DOI
[18] Yager R., “On the Dempster-Shafer framework and new combination rules”, Information Sciences, 41:2 (1987), 93–137 | DOI | MR | Zbl
[19] Dubois D., Yager R., “Fuzzy set connectives as combination of belief structures”, Information Sciences, 66:3 (1992), 245–275 | DOI | MR
[20] Bronevich A. G., Rozenberg I. N., “The choice of generalized Dempster-Shafer rules for aggregating belief functions”, International Journal of Approximate Reasoning, 56 (2015), 122–136 | DOI | MR | Zbl
[21] Cattaneo M. E. G. V., “Combining belief functions issued from dependent sources”, ISIPTA ’03: Proceedings in Informatics, eds. J.-M. Bernard, T. Seidenfeld, M. Zaffalon, Carleton Scientific, Waterloo, 2003, 133–147
[22] Destercke S., Burger T., “Toward an axiomatic definition of conflict between belief functions”, IEEE Transactions on Cybernetics, 43:2 (2013), 585–596 | DOI
[23] Lepskiy A. E., “Analysis of information inconsistency in belief function theory. Part I: External conflict”, Control Sciences, 2021, no. 5, 2–16 | DOI