Construction of a quasi-efficient frontier of a set of optimal portfolios under conditions of hybrid uncertainty with allowed short sales
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 17 (2022) no. 1, pp. 59-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes methods for constructing a quasi-efficient frontier of minimum risk portfolio under conditions of hybrid uncertainty with allowed short sales. Investor's acceptable level of expected return is defined in crisp and fuzzy forms. Obtained results are illustrated on a model example. The dependance of the quasi-efficient frontier on the value of $\alpha$-level is investigated.
Keywords: possibilistic-probabilistic optimization, minimal risk portfolio, hybrid uncertainty, Black's model, expected return, quasi-efficient frontier.
@article{FSSC_2022_17_1_a2,
     author = {S. A. Rogonov and I. S. Soldatenko and A. A. Shmeleva},
     title = {Construction of a quasi-efficient frontier of a set of optimal portfolios under conditions of hybrid uncertainty with allowed short sales},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {59--75},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2022_17_1_a2/}
}
TY  - JOUR
AU  - S. A. Rogonov
AU  - I. S. Soldatenko
AU  - A. A. Shmeleva
TI  - Construction of a quasi-efficient frontier of a set of optimal portfolios under conditions of hybrid uncertainty with allowed short sales
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2022
SP  - 59
EP  - 75
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2022_17_1_a2/
LA  - ru
ID  - FSSC_2022_17_1_a2
ER  - 
%0 Journal Article
%A S. A. Rogonov
%A I. S. Soldatenko
%A A. A. Shmeleva
%T Construction of a quasi-efficient frontier of a set of optimal portfolios under conditions of hybrid uncertainty with allowed short sales
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2022
%P 59-75
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2022_17_1_a2/
%G ru
%F FSSC_2022_17_1_a2
S. A. Rogonov; I. S. Soldatenko; A. A. Shmeleva. Construction of a quasi-efficient frontier of a set of optimal portfolios under conditions of hybrid uncertainty with allowed short sales. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 17 (2022) no. 1, pp. 59-75. http://geodesic.mathdoc.fr/item/FSSC_2022_17_1_a2/

[1] Markowitz H., “Portfolio Selection”, The Journal of Finance, 7:1 (1952), 77–91 | DOI | MR

[2] Krushvits L., Investment calculations, Piter Publ., SPb., 2001, 432 pp. (in Russian)

[3] Barbaumov V. E., Gladkikh I. M., Chujko A. S., Financial Investments: Textbook, Finance and Statistics, Moscow, 2003, 542 pp. (in Russian)

[4] Yazenin A. V., “Possibilistic–Probabilistic Models and Methods of Portfolio Optimization”, Perception-based Data Mining and Decision Making in Economics and Finance, Studies in Computational Intelligence, eds. I. Batyrshin, J. Kacprzyk, L. Sheremetov, L.A. Zadeh, Springer, Berlin, Heidelberg, 2007, 241–259 | DOI | Zbl

[5] Yazenin A., Soldatenko I., “A portfolio of minimum risk in a hybrid uncertainty of a possibilistic-probabilistic type: comparative study”, Advances in Fuzzy Logic and Technology 2017, EUSFLAT 2017, IWIFSGN 2017, v. 643, Advances in Intelligent Systems and Computing, eds. Kacprzyk J., Szmidt E., Zadrożny S., Atanassov K., Krawczak M., 2018, 551–563 | DOI

[6] Soldatenko I. S., Yazenin A. V., “On one problem of portfolio analysis under soft constraints”, Fuzzy Systems and Soft Computing, 15:1 (2020), 64–76 (in Russian) | DOI

[7] Yazenin A. V., Soldatenko I. S., “Model of a minimal risk portfolio under hybrid uncertainty”, Control and Cybernetics, 50:2 (2021), 315–332 | DOI | MR

[8] Yazenin A. V., Vagenknekht M., Vozmozhnostnaya optimizatsiya, Tver State University, Tver, 2012, 133 pp. (in Russian)

[9] Yazenin A. V., Basic concepts of the theory of possibilities. Mathematical decision-making apparatus in a hybrid uncertainty, Fizmatlit Publ., Moscow, 2016, 144 pp. (in Russian)

[10] Feng Y., Hu L., Shu H., “The variance and covariance of fuzzy random variables and their applications”, Fuzzy Sets and Systems, 120:3 (2001), 487–497 | DOI | MR | Zbl