Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FSSC_2022_17_1_a1, author = {A. G. Bronevich and I. N. Rozenberg}, title = {Algebraic properties of the {Choquet} integral}, journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a}, pages = {28--58}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FSSC_2022_17_1_a1/} }
A. G. Bronevich; I. N. Rozenberg. Algebraic properties of the Choquet integral. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 17 (2022) no. 1, pp. 28-58. http://geodesic.mathdoc.fr/item/FSSC_2022_17_1_a1/
[1] Choquet G., “Theory of capacities”, Annales de l'Institut Fourier, 5 (1954), 131–295 | DOI | MR
[2] Denneberg D., Non-additive measure and integral, Kluwer Academic Publishers, Dordrecht, 1997 | MR
[3] Denneberg D., “Non-additive measure and integral, basic concepts and their role for applications”, Fuzzy measures and integrals - Theory and applications, Studies in Fuzziness and Soft Computing, eds. M. Grabisch, T. Murofishi, M. Sugeno, Physica-Verlag, Heidelberg, 2000, 42–69 | MR | Zbl
[4] Murofushi T., Sugeno M., “The Choquet integral in multiattribute decision making”, Fuzzy measures and integrals - Theory and applications, Studies in Fuzziness and Soft Computing, eds. M. Grabisch, T. Murofishi, M. Sugeno, Physica-Verlag, Heidelberg, 2000, 333–347 | MR | Zbl
[5] Grabisch M., Roubens M., “Application of the Choquet integral in multicriteria decision making”, Fuzzy measures and integrals - Theory and applications, Studies in Fuzziness and Soft Computing, eds. M. Grabisch, T. Murofishi, M. Sugeno, Physica-Verlag, Heidelberg, 2000, 348–374 | MR | Zbl
[6] Grabisch M., Labreuche C., “A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid”, Annals of Operations Research, 175 (2010), 247–286 | DOI | MR | Zbl
[7] Timonin M., “Robust optimization of the Choquet integral”, Fuzzy Sets and Systems, 213 (2013), 27–46 | DOI | MR | Zbl
[8] Gilboa I., Schmeidler D., “Max-min expected utility with non-unique prior”, Journal of Mathematical Economics, 18 (1989), 141–153 | DOI | MR | Zbl
[9] Chateauneuf A., Cohen M., “Choquet expected utility model: A new approach to individual behavior under uncertainty and to social welfares”, Fuzzy measures and integrals - Theory and applications, Studies in Fuzziness and Soft Computing, eds. M. Grabisch, T. Murofishi, M. Sugeno, Physica-Verlag, Heidelberg, 2000, 289–313 | MR | Zbl
[10] Heilpern S., “Using Choquet integral in economics”, Statistical Papers, 43 (2002), 53–73 | DOI | MR | Zbl
[11] Grabisch M., “Fuzzy integral for classification and feature extraction”, Fuzzy measures and integrals - Theory and applications, Studies in Fuzziness and Soft Computing, eds. M. Grabisch, T. Murofishi, M. Sugeno, Physica-Verlag, Heidelberg, 2000, 415–434 | MR | Zbl
[12] Keller J. M., Gader P. D., Hocaoglu A. K., “Fuzzy integrals in image processing and recognition”, Fuzzy measures and integrals - Theory and applications, Studies in Fuzziness and Soft Computing, eds. M. Grabisch, T. Murofishi, M. Sugeno, Physica-Verlag, Heidelberg, 2000, 435–466 | MR | Zbl
[13] Dubois D., Prade H., Sabbadin R., “Qualitative decision theory with Sugeno integrals”, Fuzzy measures and integrals - Theory and applications, Studies in Fuzziness and Soft Computing, eds. M. Grabisch, T. Murofishi, M. Sugeno, Physica-Verlag, Heidelberg, 2000, 314–332 | MR | Zbl
[14] Bronevich A. G., Karkishchenko A. N., “The structure of fuzzy measure families induced by upper and lower probabilities”, Statistical Modeling, Analysis and Management of Fuzzy Data, eds. C. Bertoluzza, M.A. Gil, D.A. Ralescu, Physica-Verlag, Heidelberg, 2002, 160–172 | DOI | MR
[15] Bronevich A. G., “An investigation of ideals in the set of fuzzy measures”, Fuzzy Sets and Systems, 152 (2005), 271–288 | DOI | MR | Zbl
[16] Bronevich A. G., Karkishchenko A. N., “Description of fuzzy measures in the framework of the probabilistic approach”, Fuzzy Systems and Soft Computing, 2:2 (2007), 7–30 (in Russian) | Zbl
[17] Bronevich A. G., Rozenberg I. N., “Description of fuzzy measures in the framework of the probabilistic approach”, Fuzzy Systems and Soft Computing, 7:1 (2012), 5–22 (in Russian) | Zbl
[18] Wang Z., Klir G. J., Generalized measure theory, Springer, New York, 2009 | MR | Zbl
[19] Mesiar R., “Choquet-like integrals”, Journal of Mathematical Analysis and Applications, 194 (1995), 477–488 | DOI | MR | Zbl
[20] Pap E., “Pseudo-convolution and its applications”, Fuzzy measures and integrals - Theory and applications, Studies in Fuzziness and Soft Computing, eds. M. Grabisch, T. Murofishi, M. Sugeno, Physica-Verlag, Heidelberg, 2000, 171–204 | MR | Zbl
[21] Even Y., Lehrer E., “Decomposition-integral: unifying Choquet and the concave integrals”, Economy Theory, 56 (2014), 33–58 | DOI | MR | Zbl
[22] Sugeno M., “Fuzzy measure and fuzzy integral”, Transactions of the Society of Instrument and Control Engineers, 8:2 (1972), 218–226 | DOI
[23] Averkin A. N., Batyrshin I. Z., Blishun A. F., Silov V. B., Tarasov V. B., Fuzzy sets in control and artificial intelligence models, ed. D.A. Pospelova, Nauka Publ., Moscow, 1986 (in Russian)
[24] Vorobev N. N., Game theory, Nauka Publ., Moscow, 1985 (in Russian) | MR
[25] Danilov V. I., Lectures on game theory, Russian School of Economics, Moscow, 2002 (in Russian)
[26] Mejer P. A., Probability and potentials, Mir Publ., Moscow, 1973 (in Russian)
[27] Walley P., Statistical reasoning with imprecise probabilities, Chapman and Hall, London, 1991 | MR | Zbl
[28] Kuznetsov V. P., Interval statistical models, Radio i Svyaz Publ., Moscow, 1991 (in Russian) | MR
[29] Khyuber P., Robastnost v statistike, Mir Publ., Moscow, 1984 (in Russian) | MR
[30] Shafer G., A Mathematical Theory of Evidence, Princeton University Press, Princeton, NJ, 1976, 314 pp. | MR | Zbl
[31] Dubois D., Prade H., Theorie des Possibilites, Application a la Representation des Connaissances en Informatique, Masson, Paris, 1988 | MR | MR
[32] Shapley L. S., “Cores of convex games”, International Journal of Game Theory, 1 (1971), 11–26 | DOI | MR | Zbl
[33] Danilov V. I., Koshevoy G. A., “Cores of cooperative games, superdifferentials of functions and the Minkowski difference of sets”, Journal of Mathematical Analysis and Applications, 247 (2000), 1–14 | DOI | MR | Zbl
[34] Chateauneuf A., Jaffray J. Y., “Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion”, Mathematical Social Sciences, 17 (1989), 263–283 | DOI | MR | Zbl
[35] Grabisch M., “The interaction and Möbius representations of fuzzy measures on finite spaces, k-additive measures: A survey”, Fuzzy measures and integrals - Theory and applications, Studies in Fuzziness and Soft Computing, eds. M. Grabisch, T. Murofishi, M. Sugeno, Physica-Verlag, Heidelberg, 2000, 70–93 | MR | Zbl
[36] Schmeidler D., “Integral representation without additivity”, Proceedings of the American Mathematical Society, 97 (1986), 255–261 | DOI | MR | Zbl
[37] Bronevich A. G., “On the closure of families of fuzzy measures under eventwise aggregations”, Fuzzy Sets and Systems, 153 (2005), 45–70 | DOI | MR | Zbl
[38] Bronevich A. G., “Necessary and sufficient consensus conditions for the eventwise aggregation of lower probabilities”, Fuzzy Sets and Systems, 158 (2007), 881–894 | DOI | MR | Zbl
[39] Brüning M., Denneberg D., “Max-min-additive representation of monotone measures”, Statistical Papers, 43 (2002), 23–35 | DOI | MR | Zbl
[40] Labreuche C., “An axiomatization of the Choquet integral and its utility functions without any commensurability assumption”, Advances in Computational Intelligence, Communications in Computer and Information Science, eds. S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, R.R. Yager, Springer, Berlin-Heidelberg, 2012, 258–267 | DOI | MR | Zbl
[41] Timonin M., Conjoint axiomatization of the Choquet integral for heterogeneous product sets, arXiv:1603.08142 [q-fin.EC], 2018, 31 pp. | DOI