Algebraic properties of the Choquet integral
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 17 (2022) no. 1, pp. 28-58

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we analyze how the properties of the Choquet integral depend on a monotone measure, which are used in integration, namely, based on its characterization in the theory of imprecise probabilities. In particular, using integration, we can generate monotone measures and characterize them by identifying their membership to various families of lower and upper probabilities. In addition, with the help of the Choquet integral, we generate monotone measures on the algebra of fuzzy subsets and analyze their properties. In the paper, we also present a new approach of the Choquet integral axiomatization based on the canonical representation of simple functions.
Keywords: Choquet integral, monotone (fuzzy) measures, lower and upper probabilities.
@article{FSSC_2022_17_1_a1,
     author = {A. G. Bronevich and I. N. Rozenberg},
     title = {Algebraic properties of the {Choquet} integral},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {28--58},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2022_17_1_a1/}
}
TY  - JOUR
AU  - A. G. Bronevich
AU  - I. N. Rozenberg
TI  - Algebraic properties of the Choquet integral
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2022
SP  - 28
EP  - 58
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2022_17_1_a1/
LA  - ru
ID  - FSSC_2022_17_1_a1
ER  - 
%0 Journal Article
%A A. G. Bronevich
%A I. N. Rozenberg
%T Algebraic properties of the Choquet integral
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2022
%P 28-58
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2022_17_1_a1/
%G ru
%F FSSC_2022_17_1_a1
A. G. Bronevich; I. N. Rozenberg. Algebraic properties of the Choquet integral. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 17 (2022) no. 1, pp. 28-58. http://geodesic.mathdoc.fr/item/FSSC_2022_17_1_a1/