About a new family of fuzzy operations
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 16 (2021) no. 2, pp. 123-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article presents the results of the study of additive generators in the form of fractional linear functions. Restrictions on the coefficients of increasing and decreasing generators are determined. It is shown that inverse functions under certain conditions are also additive generators. For each case, the corresponding triangular norms or conorms are found. It is established that triangular norms and conorms obtained on the basis of fractional linear functions, as well as dual ones, have the same structure. The values of the parameters at which the known families are obtained are determined. In fact, a new family of dual triangular norms and conorms is proposed, which generalizes the known families.
Keywords: triangular norms and conorms, additive generators, fractional linear functions.
@article{FSSC_2021_16_2_a3,
     author = {T. M. Ledeneva},
     title = {About a new family of fuzzy operations},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {123--138},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2021_16_2_a3/}
}
TY  - JOUR
AU  - T. M. Ledeneva
TI  - About a new family of fuzzy operations
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2021
SP  - 123
EP  - 138
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2021_16_2_a3/
LA  - ru
ID  - FSSC_2021_16_2_a3
ER  - 
%0 Journal Article
%A T. M. Ledeneva
%T About a new family of fuzzy operations
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2021
%P 123-138
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2021_16_2_a3/
%G ru
%F FSSC_2021_16_2_a3
T. M. Ledeneva. About a new family of fuzzy operations. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 16 (2021) no. 2, pp. 123-138. http://geodesic.mathdoc.fr/item/FSSC_2021_16_2_a3/

[1] Klement E. P., Mesiar R., Pap E., “Triangular norms. Position paper I: basic analytical and algebraic properties”, Fuzzy Sets and Systems, 143 (2004), 5–26 | DOI | MR | Zbl

[2] Klement E. P., Mesiar R., Pap E., “Triangular norms. Position paper II: general constructions and parameterized families”, Fuzzy Sets and Systems, 145:3 (2004), 411–438 | DOI | MR | Zbl

[3] Klement E. P., Mesiar R., Pap E., “Triangular norms. Position paper III: continuous t-norms, Fuzzy Set and Systems”, Fuzzy Sets and Systems, 145:3 (2004), 439–454 | DOI | MR | Zbl

[4] Schweizer B., Sklar A., Probabilistic Metric Spaces, North-Holland, New York, 1983 | Zbl

[5] Aczel J., Lectures on Functional Equations and their Applications, Academic Press, New York, 1966 | Zbl

[6] Ling C. M., “Representation of associative function”, Publicationes Mathematicae Debrecen, 12 (1995), 189–212

[7] Klir G. J., Yuan B., Fuzzy sets and fuzzy logic: theory and applications, Prentice Hall, 1995, 574 pp. | Zbl

[8] Navara M., Petrik M., Sarkoci P., “Explicit formulas for generators of triangular norms”, Publicationes Mathematicae Debrecen, 77:1-2 (2010), 171–191 | MR | Zbl

[9] Ouyang Y., “On the construction of boundary weak triangular norms through additive generators”, Nonlinear Analysis, 66 (2007), 125–130 | DOI | MR | Zbl

[10] Klement E. P., Mesiar R., Pap E., “Problems on triangular norms and related operators”, Fuzzy Sets and Systems, 145 (2004), 471–479 | DOI | MR | Zbl

[11] Ledeneva T. M., “Certain aspects of representation of fuzzy operators in the form of a ratio of two polynomials”, Russian Mathematics, 41:11 (1997), 31–38 | MR | Zbl

[12] Ledeneva T. M., “Analysis of additive generators of fuzzy operations represented by rational functions”, Journal of Physics: Conference Series, 973 (2018), 012037 | DOI

[13] Ledeneva T., “Additive generators of fuzzy operations in the form of linear fractional functions”, Fuzzy Sets and Systems, 386 (2020), 1–24 | DOI | MR | Zbl