Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FSSC_2021_16_1_a3, author = {A. V. Yazenin and I. S. Soldatenko}, title = {Comparative study of the behavior of the effective boundary of minimal risk portfolio in the conditions of hybrid uncertainty, depending on the restrictions on the profitability of the portfolio}, journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a}, pages = {58--69}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a3/} }
TY - JOUR AU - A. V. Yazenin AU - I. S. Soldatenko TI - Comparative study of the behavior of the effective boundary of minimal risk portfolio in the conditions of hybrid uncertainty, depending on the restrictions on the profitability of the portfolio JO - Nečetkie sistemy i mâgkie vyčisleniâ PY - 2021 SP - 58 EP - 69 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a3/ LA - ru ID - FSSC_2021_16_1_a3 ER -
%0 Journal Article %A A. V. Yazenin %A I. S. Soldatenko %T Comparative study of the behavior of the effective boundary of minimal risk portfolio in the conditions of hybrid uncertainty, depending on the restrictions on the profitability of the portfolio %J Nečetkie sistemy i mâgkie vyčisleniâ %D 2021 %P 58-69 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a3/ %G ru %F FSSC_2021_16_1_a3
A. V. Yazenin; I. S. Soldatenko. Comparative study of the behavior of the effective boundary of minimal risk portfolio in the conditions of hybrid uncertainty, depending on the restrictions on the profitability of the portfolio. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 16 (2021) no. 1, pp. 58-69. http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a3/
[1] Yazenin A., Soldatenko I., “On the Problem of Possibilistic-Probabilistic Optimization with Constraints on Possibility/Probability”, Advances in Intelligent Systems and Computing, Lecture Notes in Computer Science, 11291, eds. Giove S., Masulli F., Fuller R., Springer, Cham, 2019, 43–54 | DOI
[2] Yazenin A. V., Soldatenko I. S., “The problem of possibility-probability optimization with constraints on the possibility/necessity-probability and probability-possibility/necessity”, Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte. Sbornik nauchnykh trudov X-j Mezhdunarodnoj nauchno-tekhnicheskoj konferentsii, IMMV-2021, V 2-kh tomakh (Kolomna, 17-20 maya 2021 g.), v. 1, Universum, Smolensk, 2021, 271–283 (in Russian)
[3] Yazenin A. V., Soldatenko I. S., “On one model of a minimal risk portfolio under hybrid uncertainty”, Fuzzy systems, soft computing and intelligent technologies, FSSCIT-2020, Proceedings of the VIII International Scientific and Practical Conference (Smolensk, June 29 - July 01, 2020), Universum, Smolensk, 2020, 43–53 (in Russian)
[4] Yazenin A. V., Basic concepts of the theory of possibilities. Mathematical decision-making apparatus in a hybrid uncertainty, Fizmatlit Publ., Moscow, 2016, 144 pp. (in Russian)
[5] Nahmias S., “Fuzzy variables in a random environment”, Advances in Fuzzy Set Theory and Applications, eds. M.M. Gupta, R.K. Ragade, R.R. Yager, North-Holland, Amsterdam, 1979, 165–180 | MR
[6] Yazenin A., Wagenknecht M., Possibilistic Optimization. A Measure-Based Approach, Brandenburgische Technische Universitat, Cotbus, Germany, 1996, 133 pp.
[7] Nguyen H. T., Walker E. A., A First Course in Fuzzy Logic, CRC Press, Boca Raton, 1997 | MR | Zbl
[8] Mesiar R., “Triangular-norm-based addition of fuzzy intervals”, Fuzzy Sets and Systems, 91 (1997), 231–237 | DOI | MR | Zbl
[9] Hong D. H., “Parameter estimations of mutually t-related fuzzy variables”, Fuzzy Sets and Systems, 123:1 (2001), 63–71 | DOI | MR | Zbl
[10] Yazenin A. V., “On the problem of possibilistic optimization”, Fuzzy Sets and Systems, 81 (1996), 133–140 | DOI | MR | Zbl
[11] Feng Y., Hu L., Shu H., “The variance and covariance of fuzzy random variables and their applications”, Fuzzy Sets and Systems, 120:3 (2001), 487–497 | DOI | MR | Zbl
[12] Yazenin A. V., Soldatenko I. S., “Model of a minimal risk portfolio under hybrid undertainty”, Control and Cybernetics, 50:2 (2021) (to appear)
[13] Dubois D., Prade H., Theorie des Possibilites, Application a la Representation des Connaissances en Informatique, Masson, Paris, 1988 | MR | MR