Comparative study of the behavior of the effective boundary of minimal risk portfolio in the conditions of hybrid uncertainty, depending on the restrictions on the profitability of the portfolio
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 16 (2021) no. 1, pp. 58-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the effective boundary of the minimum risk portfolio in the conditions of hybrid uncertainty. For the case of a two-dimensional portfolio, with a restriction on the expected return of the portfolio and a restriction on possibility/necessity and probability on the return of the portfolio, quasi-effective portfolio boundaries are constructed depending on the probability level. The results of numerical experiments are consistent with the theoretical results previously obtained by the authors.
Keywords: portfolio of minimal risk, probability-probabilistic optimization, constraints on possibility/necessity and probability, constraints on probability and possibility/necessity, equivalent deterministic analog, equivalent stochastic analog, fuzzy random variable, the strongest $t$ - norm.
@article{FSSC_2021_16_1_a3,
     author = {A. V. Yazenin and I. S. Soldatenko},
     title = {Comparative study of the behavior of the effective boundary of minimal risk portfolio in the conditions of hybrid uncertainty, depending on the restrictions on the profitability of the portfolio},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {58--69},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a3/}
}
TY  - JOUR
AU  - A. V. Yazenin
AU  - I. S. Soldatenko
TI  - Comparative study of the behavior of the effective boundary of minimal risk portfolio in the conditions of hybrid uncertainty, depending on the restrictions on the profitability of the portfolio
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2021
SP  - 58
EP  - 69
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a3/
LA  - ru
ID  - FSSC_2021_16_1_a3
ER  - 
%0 Journal Article
%A A. V. Yazenin
%A I. S. Soldatenko
%T Comparative study of the behavior of the effective boundary of minimal risk portfolio in the conditions of hybrid uncertainty, depending on the restrictions on the profitability of the portfolio
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2021
%P 58-69
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a3/
%G ru
%F FSSC_2021_16_1_a3
A. V. Yazenin; I. S. Soldatenko. Comparative study of the behavior of the effective boundary of minimal risk portfolio in the conditions of hybrid uncertainty, depending on the restrictions on the profitability of the portfolio. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 16 (2021) no. 1, pp. 58-69. http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a3/

[1] Yazenin A., Soldatenko I., “On the Problem of Possibilistic-Probabilistic Optimization with Constraints on Possibility/Probability”, Advances in Intelligent Systems and Computing, Lecture Notes in Computer Science, 11291, eds. Giove S., Masulli F., Fuller R., Springer, Cham, 2019, 43–54 | DOI

[2] Yazenin A. V., Soldatenko I. S., “The problem of possibility-probability optimization with constraints on the possibility/necessity-probability and probability-possibility/necessity”, Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte. Sbornik nauchnykh trudov X-j Mezhdunarodnoj nauchno-tekhnicheskoj konferentsii, IMMV-2021, V 2-kh tomakh (Kolomna, 17-20 maya 2021 g.), v. 1, Universum, Smolensk, 2021, 271–283 (in Russian)

[3] Yazenin A. V., Soldatenko I. S., “On one model of a minimal risk portfolio under hybrid uncertainty”, Fuzzy systems, soft computing and intelligent technologies, FSSCIT-2020, Proceedings of the VIII International Scientific and Practical Conference (Smolensk, June 29 - July 01, 2020), Universum, Smolensk, 2020, 43–53 (in Russian)

[4] Yazenin A. V., Basic concepts of the theory of possibilities. Mathematical decision-making apparatus in a hybrid uncertainty, Fizmatlit Publ., Moscow, 2016, 144 pp. (in Russian)

[5] Nahmias S., “Fuzzy variables in a random environment”, Advances in Fuzzy Set Theory and Applications, eds. M.M. Gupta, R.K. Ragade, R.R. Yager, North-Holland, Amsterdam, 1979, 165–180 | MR

[6] Yazenin A., Wagenknecht M., Possibilistic Optimization. A Measure-Based Approach, Brandenburgische Technische Universitat, Cotbus, Germany, 1996, 133 pp.

[7] Nguyen H. T., Walker E. A., A First Course in Fuzzy Logic, CRC Press, Boca Raton, 1997 | MR | Zbl

[8] Mesiar R., “Triangular-norm-based addition of fuzzy intervals”, Fuzzy Sets and Systems, 91 (1997), 231–237 | DOI | MR | Zbl

[9] Hong D. H., “Parameter estimations of mutually t-related fuzzy variables”, Fuzzy Sets and Systems, 123:1 (2001), 63–71 | DOI | MR | Zbl

[10] Yazenin A. V., “On the problem of possibilistic optimization”, Fuzzy Sets and Systems, 81 (1996), 133–140 | DOI | MR | Zbl

[11] Feng Y., Hu L., Shu H., “The variance and covariance of fuzzy random variables and their applications”, Fuzzy Sets and Systems, 120:3 (2001), 487–497 | DOI | MR | Zbl

[12] Yazenin A. V., Soldatenko I. S., “Model of a minimal risk portfolio under hybrid undertainty”, Control and Cybernetics, 50:2 (2021) (to appear)

[13] Dubois D., Prade H., Theorie des Possibilites, Application a la Representation des Connaissances en Informatique, Masson, Paris, 1988 | MR | MR