On a method of solving of possibilistic-probabilistic programming problems
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 16 (2021) no. 1, pp. 21-33
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper studies possibilistic-probabilistic optimization problems, based on the principle of expected possibility, and a method for solving its stochastic analogue in the case of the weakest t-norm describing the interaction of fuzzy parameters. The conditions that are easier to verify and ensure the convergence of the method of stochastic quasigradients of the solution of an equivalent stochastic analog are obtained.
Keywords:
possitbilistic-probabilistic optimization, stochastic quasi-gradient method, fuzzy random variable, the weakest t-norm.
@article{FSSC_2021_16_1_a1,
author = {Yu. E. Egorova},
title = {On a method of solving of possibilistic-probabilistic programming problems},
journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
pages = {21--33},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a1/}
}
Yu. E. Egorova. On a method of solving of possibilistic-probabilistic programming problems. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 16 (2021) no. 1, pp. 21-33. http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a1/