On the average values of fuzzy numbers and their systems
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 16 (2021) no. 1, pp. 5-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider the extreme properties of the mean values of fuzzy numbers, as well as their systems. Nonlinear means are introduced and their properties are observed.
Keywords: fuzzy numbers, mean values, extreme properties.
@article{FSSC_2021_16_1_a0,
     author = {V. L. Khatskevich},
     title = {On the average values of fuzzy numbers and their systems},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {5--20},
     year = {2021},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a0/}
}
TY  - JOUR
AU  - V. L. Khatskevich
TI  - On the average values of fuzzy numbers and their systems
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2021
SP  - 5
EP  - 20
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a0/
LA  - ru
ID  - FSSC_2021_16_1_a0
ER  - 
%0 Journal Article
%A V. L. Khatskevich
%T On the average values of fuzzy numbers and their systems
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2021
%P 5-20
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a0/
%G ru
%F FSSC_2021_16_1_a0
V. L. Khatskevich. On the average values of fuzzy numbers and their systems. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 16 (2021) no. 1, pp. 5-20. http://geodesic.mathdoc.fr/item/FSSC_2021_16_1_a0/

[1] Piegat A., Fuzzy Modeling and Control, Springer-Verlag, Berlin, Heidelberg, 2001, 725 pp.

[2] Borisov V. V., Fedulov A. S., Zernov M. M., Basics of fuzzy arithmetic, Tutorial, Goryachaya liniya - Telekom, Moscow, 2019, 98 pp. (in Russian)

[3] Dzhini K., Average values, Statistika Publ., Moscow, 1970, 447 pp. (in Russian)

[4] Orlov A. I., Prikladnaya statistika, Ekzamen Publ., Moscow, 2006, 672 pp. (in Russian)

[5] Nguyen H. T., Wu B., Fundamentals of statistics with fuzzy data, Springer, Berlin, 2006, 204 pp. | Zbl

[6] Gnedenko B. V., The Theory of Probability, AMS Chelsea Publishing, Providence, Rhode Island, 2005, 529 pp. | MR | MR

[7] Khatskevich V. L., “On some class of nonlinear mean random values”, Journal of Physics: Conference Series, 1479 (2020), 012087 | DOI

[8] Khatskevich V. L., “On random properties of mean values of continuous random variables and relations between them”, Journal of Mathematical Sciences, 1:2 (2017), 304–312 | DOI | MR

[9] Yazenin A. V., Basic concepts of the theory of possibilities. Mathematical decision-making apparatus in a hybrid uncertainty, Fizmatlit Publ., Moscow, 2016, 144 pp. (in Russian)

[10] Hoffmann-Jorgensen J., Probability with a view toward statistics, Chapman and Hall, New York, 1998, 589 pp. | MR

[11] Bargiela A., Pedrycz W., Nakashima T., “Multiple Regression with fuzzy data”, Fuzzy Sets and Systems, 2007, 2169–2188 | DOI | MR | Zbl

[12] Veldyaksov V. N., Shvedov A. S., “On the least squares method for regression with fuzzy data”, HSE Economic Journal, 18:2 (2014), 328–344 (in Russian)

[13] Dubois D., Prade H., “The mean value of fuzzy number”, Fuzzy Sets and Systems, 1987, 279–300 | DOI | MR | Zbl

[14] Fuller R., Majlender P., “On weighted possibilistic mean value and variance of fuzzy numbers”, Fuzzy Sets and Systems, 2003, 363–374 | DOI | MR | Zbl

[15] Khatskevich V. L., “On some extreme properties of average values and mathematical expectations of random variables”, Bulletin of the Voronezh State Technical University, 9:1-3 (2013), 39–44 (in Russian)

[16] Calvo T., Mesiar R., “Generalized median”, Fuzzy Sets and Systems, 124 (2001), 59–61 | DOI | MR

[17] Khardi G., Poja D., Littlvud D., Inequalities, MTsNMO Publ., Moscow, 2008, 456 pp. (in Russian)